эдс на концах проводника движущегося в магнитном поле

Движение проводника в магнитном поле

1. Вступление

Для того чтобы установить природу силы в проводнике, который движется в магнитном поле, проведём эксперимент. Предположим, что в вертикальном однородном магнитном поле с индукцией (56e423d0 a9f8 0131 68bc 12313c0dade2) расположен горизонтальный проводник длиной (l), который движется с постоянной скоростью (58147790 a9f8 0131 68bd 12313c0dade2) перпендикулярно вектору магнитной индукции магнитного поля. Если подсоединить к концам этого проводника чувствительный вольтметр, то увидим, что он покажет наличие разности потенциалов на концах этого проводника. Выясним, откуда берётся это напряжение. В данном случае нет контура и нет изменяющегося магнитного поля, поэтому мы не может сказать, что движение электронов в проводнике возникло в результате появления вихревого электрического поля. Когда проводник движется, как единое целое (рис. 1), у зарядов проводника и у положительных ионов, которые находятся в узлах кристаллической решётки, и у свободных электронов возникает скорость направленного движения.

5955f300 a9f8 0131 68be 12313c0dade2

На эти заряды будет действовать сила Лоренца со стороны магнитного поля. Согласно правилу «левой руки»: четыре пальца, расположенные по направлению движения, ладонь разворачиваем так, чтобы вектор магнитной индукции входил в тыльную сторону, тогда большой палец укажет действие силы Лоренца на положительные заряды.

Сила Лоренца, действующая на заряды, равна произведению модуля заряда, который она переносит, умноженной на модуль магнитной индукции, на скорость и синус угла между вектором магнитной индукции и вектором скорости.

5a8df330 a9f8 0131 68bf 12313c0dade2(1)

Эта сила будет совершать работу по переносу электронов на малые расстояния вдоль проводника.

5bd39bc0 a9f8 0131 68c0 12313c0dade2(2)

Тогда полная работа силы Лоренца вдоль проводника будет определяться силой Лоренца, умноженной на длину проводника.

5cea8690 a9f8 0131 68c1 12313c0dade2(3)

2. Природа ЭДС, возникающая при движении проводника в магнитном поле

Отношение работы сторонней силы по перемещению заряда к величине перенесённого заряда по определению ЭДС.

5e1d91b0 a9f8 0131 68c2 12313c0dade2(4)

Итак, природа возникновения ЭДС индукции – это работа силы Лоренца. Однако, формулу 10.4. можно получить формально, исходя из определения ЭДС электромагнитной индукции, когда проводник перемещается в магнитном поле, пересекая линии магнитной индукции, перекрывая некоторую площадку, которую можно определить как произведение длины проводника на перемещение, которое можно выразить через скорость и время движения. ЭДС индукции по модулю равно отношению изменения магнитного потока ко времени.

5f48ef10 a9f8 0131 68c3 12313c0dade2(5)

Модуль магнитной индукции постоянный, но изменяется площадь, которая покрывает проводник.

608e2980 a9f8 0131 68c4 12313c0dade2(6)

После подстановки, выражения в формулу 10.5. и сокращения получим:

61d26660 a9f8 0131 68c5 12313c0dade2(7)

62f4efb0 a9f8 0131 68c6 12313c0dade2(10.8.)

3. Сила Лоренца

Сила Лоренца, действующая вдоль проводника, за счёт чего происходит перераспределение зарядов – это лишь одна составляющая сил. Также имеется вторая составляющая, которая возникает именно в результате движения зарядов. Если электроны начинают перемещаться по проводнику, а проводник находится в магнитном поле, то тогда начинает действовать сила Лоренца, и направлена она будет против движения скорости проводника. Таким образом, суммирующая сила Лоренца будет равна нулю.

4. Электродвижущая сила индукции

Полученное выражение для ЭДС индукции, возникающей при движении проводника в магнитном поле, можно получить и формально, исходя из определения. ЭДС индукции равно скорости изменения магнитного потока за единицу времени, взятого со знаком минус.

Читайте также:  ванная комната со срезанным углом

6443afc0 a9f8 0131 68c7 12313c0dade2

656a0fc0 a9f8 0131 68c8 12313c0dade2

6689fa60 a9f8 0131 68c9 12313c0dade2

67db20f0 a9f8 0131 68ca 12313c0dade2

5. Итоги

Когда неподвижный проводник находится в изменяющемся магнитном поле и когда сам проводник движется в постоянном магнитном поле, возникает явление электромагнитной индукции. И в том, и в другом случае возникает ЭДС индукции. Однако природа этой силы различна.

Список рекомендованной литературы

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

Источник

Физика. 10 класс

§ 32-1. Вихревое электрическое поле. ЭДС индукции в движущихся проводниках

Вихревое электрическое поле. При изменении магнитного потока через поверхность, ограниченную проводящим замкнутым неподвижным (относительно выбранной инерциальной системы отсчёта) контуром, в нём возникает электрический ток. Это свидетельствует о том, что на свободные заряженные частицы в контуре действуют силы. Но для беспорядочно движущихся заряженных частиц усреднённое значение силы Лоренца равно нулю, следовательно, на такие частицы действует электрическое поле. Дж. Максвелл первым предположил, что при любом изменении во времени магнитного поля в окружающем пространстве возникает электрическое поле. Его называют индукционным или индуцированным. Именно это индукционное электрическое поле действует на заряженные частицы, приводя их в упорядоченное движение и создавая индукционный электрический ток. Подчеркнём, что индукционное электрическое поле не связано с электрическими зарядами, его источником является изменяющееся со временем магнитное поле. Линии напряжённости индукционного электрического поля замкнуты.

Электрическое поле, возникающее при любом изменении во времени магнитного поля, является одним из вихревых полей.

Вихревой, т. е. непотенциальный, характер индукционного электрического поля — причина того, что при перемещении заряда по замкнутой цепи это поле совершает работу, не равную нулю.

Таким образом, ЭДС индукции, возникающая в неподвижном замкнутом контуре, находящемся в изменяющемся во времени магнитном поле, равна работе сил вихревого электрического поля по перемещению вдоль этого контура единичного положительного заряда. Если такой контур оказывается проводящим, то возникшая в нём ЭДС индукции приводит к появлению индукционного тока.

Максвелл в 1873 г. установил, что ЭДС индукции, возникающая в неподвижном контуре при изменении во времени магнитного поля, не зависит от характеристик этого контура (вещества, вида свободных носителей заряда, сопротивления, температуры и др.). На основании этого он сделал вывод, что роль контура сводится только к индикации вихревого электрического поля, создаваемого переменным магнитным полем.

Итак, сущность явления электромагнитной индукции заключается в том, что вихревое электрическое поле возникает в любой точке пространства, если в этой точке существует изменяющееся во времени магнитное поле, независимо от того, есть там проводящий контур или нет.

Линии напряжённости вихревого электрического поля охватывают линии индукции изменяющегося во времени магнитного поля. Направление линий напряжённости вихревого электрического поля определяют по правилу Ленца. Действительно, если поместить в изменяющееся во времени магнитное поле замкнутый проводящий контур, то по нему в направлении линий напряжённости электрического поля пойдёт индукционный электрический ток.

Источник

ЭДС при движении проводника в поле

ЭДС при движении проводника в магнитном поле.

При движении перемычки К на электроны действует сила Лоренца, совершающая работу. Электроны перемещаются отС к А. Перемычка – источник ЭДС. Следовательно

image001

image002 45

Эта формула используется в любом проводнике, движущемся в магнитном поле, если image003 0 ↑↑ image004 51.

Если между векторами image003 0и image004 51 есть угол, то используется формула

Читайте также:  стихи выйду ночью в поле с конем

image007 5

image007 5

image009 4

Другой способ вывода формулы эдс в движущемся проводнике.

Т.к. – электроны начинают под действием силы Лоренца перемещаться к одному из концов проводника, то возникает электрическое поле. Оно будет возрастать до тех пор, пока электрическая сила не уравновесит силу Лоренца. image011 7.

Учитывая, что image012 38, получим: image013 9.

Явление существенно при движении проводников значительной длины или с большой скоростью, например, при полете самолета (в магнитном поле Земли).

Знак можно определить по правилу правой руки Правило правой руки для индукционного тока. Если правую руку расположить так, чтобы линии магнитной индукции (В) входили в ла­донь, а отогнутый большой палец по­казывал направление движения провод­ника, то четыре вытянутых пальца ука­жут направление индукционного тока в проводнике.

Вихревое электрическое поле

Электроны в проводниках вторичной обмотки приводятся в движение элект­рическим полем (ЭП), которое порож­дается переменным магнитным полем (МП).

image014 32

Фундаментальное свойство поля.

ЭП, порождаемое переменным МП, не связано с зарядом; силовые линии нигде не начинаются и не кончаются, т. е. линии замкнутые. Такое поле — вихревое электрическое.

image015 10

Токи Фуко

Индукционный ток в массивных проводниках называют то­ками Фуко.

Используют: плавка металлов в вакууме. Вредное действие: бесполезная потеря энергии в сердечниках трансформаторов и в генераторах.

Источник

Закон электромагнитной индукции

теория по физике 🧲 магнетизм

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S. Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока.

Сила индукционного тока пропорциональная скорости изменения магнитного потока через поверхность, ограниченную контуром:

Согласно закону Ома для замкнутой цепи:

Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, сила индукционного тока пропорциональна скорости изменения магнитного потока только потому, что ЭДС индукции тоже пропорциональна этой скорости изменения потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Определение знака ЭДС индукции

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль → n к контуру образует правый винт с направлением обхода.

image1 16

Пример №1. Магнитный поток через контур проводника сопротивлением 3∙10 –2 Ом за 2 с изменился на 1,2∙10 –2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

image2 12

ЭДС индукции в движущихся проводниках

Электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле порождается переменным магнитным полем. Следовательно, изменяясь во времени, магнитное поле порождает электрическое поле. Но если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, которое в этом случае не может возникнуть, а другой причиной.

При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение.

Вычислим ЭДС индукции, возникающую в проводнике, движущемся в однородном магнитном поле (см. рисунок). Пусть сторона контура MN длиной l скользит с постоянной скоростью → v вдоль сторон NC и MD, оставаясь все это время параллельной стороне CD. Вектор магнитной индукции → B однородного поля перпендикулярен проводнику и составляет угол α с направлением его скорости.

Читайте также:  ложим осб на деревянный пол

image3 11

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна по модулю:

Направлена эта сила вдоль проводника MN. Работа силы Лоренца на пути l положительна и составляет:

Формула выше определяет неполную работу силы Лоренца. Кроме силы Лоренца имеется составляющая силы Лоренца, направленная против скорости проводника → v . Такая составляющая тормозит проводник и совершает отрицательную работу. В результате полная работа силы Лоренца оказывается равной нулю.

Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению заряда q к этому заряду:

Эта формула справедлива для любого проводника длиной l, движущегося со скоростью → v в однородном магнитном поле.

В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна ε i и остается неизменной, если скорость движения → v постоянна. Электрический ток при этом будет увеличиваться, так как при смещении проводника MN вправо уменьшается общее сопротивление контура.

С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции. Магнитный поток через контур MNCD равен:

угол 90 ° − α представляет собой угол между векторами → B и нормалью → n к поверхности контура, а S — площадь контура MNCD. Если считать, что в начальный момент времени t=0 проводник MN находится на расстоянии NC от проводника CD, то при перемещении проводника площадь S изменяется со временем следующим образом:

Пример №2. Проводник длиной 50 см движется в однородном магнитном поле со скоростью 4 м/с перпендикулярно силовым линиям. Найдите разность потенциалов, возникающую на концах проводника, если вектор магнитной индукции 8 мТл.

Так как проводник движется перпендикулярно силовым линиям, то угол α равен 90 градусам, а синус прямого угла равен единице. Поэтому:

Screenshot 1 1В заштрихованной области на рисунке действует однородное магнитное поле, направленное перпендикулярно плоскости рисунка, В = 0,1 Тл. Проволочную квадратную рамку сопротивлением R=10Ом и стороной l=10см перемещают в плоскости рисунка поступательно со скоростью υ=1м/с. Чему равен индукционный ток в рамке в состоянии 1?

Источник

Э,Д,С, в проводнике движущемся в магнитном поле

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Явление электромагнитной индукции открыто английским физиком М.Фарадеем в 1831 г. Если внутрь цилиндрической ка­тушки, соединенной с гальванометром, вводить постоянный маг­нит, то стрелка гальванометра будет отклоняться, т. е. в катушке появится ток. При выведении магнита, стрелка снова отклонится, но в другую сторону.

image010Электромагнитная индукция — это явление возникновения ЭДС в контуре под действием переменного магнитного поля. Электрический ток, вызванный этой ЭДС, называется индукци­онным током.

Силу, действующую на электрический заряд, движущийся в магнитном поле, называют силой Лоренца. Под действием этой силы осуществляется смещение электронов на один конец про­водника, оставляя в избытке положительные заряды на другом конце проводника, в результате чего между концами проводника возникает разность потенциалов.

Если концы проводника не замкнуты, то разность

потенциалов между ними численно равна ЭДС. При длине провода lЭДС электро­магнитной индукции определится:

Е = Bvl.

Направление ЭДС индукции на практи­ке определяют по правилу правой руки (рис.7.1). Если расположить правую руку так, чтобы линии магнитной индукции входили в ладонь, отогнутый под прямым углом большой палец показывал направле­ние движения проводника, то вытянутые четыре пальца покажут направление ЭДС индукции.

Источник

Оцените статью
Мой дом
Adblock
detector