эдс возникающая в проводнике при перемещении его в магнитном поле

Электромагнитная индукция

Возникновение в проводнике ЭДС индукции

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

Электромагнитная индукция — это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На использовании его основано устройство различных электрических машин.

1252698171 4

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой Е = Blv,

где Е — ЭДС индукции; В — магнитная индукция; I — длина проводника; v — скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.

1398451355 2

Правило правой руки

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри катушки постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

Закон Ленца для электромагнитной индукции

Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле — поле тока.

Читайте также:  межкомнатные двери невская дубровка

Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.

1398451348 1

При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.

Индукционные токи в массивных проводниках

Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые вихревые токи распространяются по массивному проводнику и накоротко замыкаются в нем.

1252698369 2

Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа индукционных нагревательных печей, счетчиков электрической энергии и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Проводник, движущийся в магнитном поле. Электромагнитная индукция. Само- и взаимоиндукция. Виды ЭДС. Вихревые токи.

image035Под действием ЭДС электроны будут двигаться и скапливаться на одном конце проводника, а на другом будет недостаток электронов, то есть положительный заряд и возникнет разность потенциалов, илиэлектрическое напряжение.

Если соединить такой проводник с внешней цепью (замкнуть путь), то под влиянием разности потенциалов будет протекать ток.

Если проводник двигать вдоль силовых линий, то поле на заряды действовать не будет, ЭДС, напряжение не возникнет, ток протекать не будет.

Такая ЭДС называется ЭДС индукции. Она определяется по закону Фарадея:

· ЭДС индукцииравна произведению скорости перемещения проводника V, магнитной индукции В и активной длины проводника L

E=VBL

Направление ее определяется по правилу правой руки:

· image036Если правую руку расположить в магнитном поле так, что силовые линии будут входить в ладонь, а отогнутый большой палец покажет направление движения проводника, то четыре вытянутых пальца покажут направление ЭДС.

ЭДС будет наводиться при любом пересечении проводника и магнитного поля. То есть можно двигать проводник, можно поле, а можно магнитное поле изменять.

Тогда ЭДС определяется по Максвеллу:

ЭДС, наведенная в контуре в результате пересечения его изменяющимся магнитным потоком, равна скорости изменения этого потока.

Где ΔФ=Ф1— Ф2 изменение магнитного потока, Вб

Δt – время, за которое изменился магнитный поток, сек.

Правило Ленца: индуцированная ЭДС имеет такое направление, что созданный ею ток противодействует изменению магнитного потока.

image037 Таким образом, способы наведения ЭДС за счет магнитного поля: 1. Изменяем ток, а значит, магнитный поток в одной катушке и пересекаем им другую катушку (трансформатор) 2. Вращаем катушку в постоянном магнитном поле (генератор постоянного тока) 3. Вращаем постоянное поле электромагнита, или постоянного магнита относительно неподвижных катушек (генератор переменного тока)

ЭДС самоиндукции.

image038Если в проводнике изменяется ток, изменяется и магнитный поток им созданный. Распространяясь в пространстве, этот магнитный поток пересекает не только соседние проводники, но и свой собственный, а значит, в собственном проводнике наводится ЭДС. Она называется ЭДС самоиндукции.

ЭДС самоиндукции – это ЭДС, возникающая в проводнике, при изменении собственного тока и магнитного потока.

Она возникает при всяком изменении тока и направлена так, чтобы не дать ему измениться. При уменьшении тока она направлена вместе с ним и поддерживает ток, при увеличении тока, направлена против, и ослабляет его.

Способность проводника (катушки) создавать ЭДС самоиндукции, называется индуктивностью L.

· Квадрата числа витков катушки w

· магнитной проницаемости µ

Где Δi/Δt – скорость изменения тока.

Эта ЭДС, препятствуя изменению тока мешает ему протекать, а значит создает сопротивление переменному току.

Это перенапряжения в цепях с большой индуктивностью при коммутации. В результате может возникнуть электрическая дуга, или искра, оплавляются контакты. Поэтому применяются меры дугогашения.

Взаимоиндукция.

image039ЭДС взаимоиндукции – это ЭДС, возникающая, в катушке при пересечении ее изменяющимся магнитным потоком другой катушки.

Читайте также:  клеенка на полу 8 букв

На этом принципе работает трансформатор.

Наведенное напряжение –это напряжение, возникающее в металлических конструкциях в результате пересечения их с переменным магнитным полем, созданным переменным током.

Таким образом, за счет магнитного поля возникают три вида ЭДС:

1. ЭДС индукции. Возникает при движении проводника в постоянном магнитном поле, или при движении поля относительно проводника.

2. ЭДС самоиндукции. Возникает из-за пересечения проводника собственным изменяющимся магнитным полем.

3. ЭДС взаимоиндукции. Возникает при пересечении проводника чужим изменяющимся магнитным полем.

Вихревые токи.

По другому: токи Фуко, индукционные токи.

image040Это токи, возникающие в массивных стальных частях электроустановок (сердечниках, корпусах), из-за пересечения их изменяющимся магнитным потоком и наведения ЭДС. В результате малого сопротивления, возникшие короткозамкнутые токи сильно нагревают машины.

Потери на вихревые токи – это потери мощности, идущие на нагрев.

Для снижения потерь уменьшают вихревые токи следующим образом:

1. Сердечники электромашин выполняют шихтованными, то есть набирают из листов электротехнической стали, изолированных лаком. Тем самым уменьшают сечение, а значит, увеличивают сопротивление току.

2. В сталь добавляют кремний, обладающий большим сопротивлением.

Дата добавления: 2016-12-16 ; просмотров: 14643 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Э,Д,С, в проводнике движущемся в магнитном поле

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Явление электромагнитной индукции открыто английским физиком М.Фарадеем в 1831 г. Если внутрь цилиндрической ка­тушки, соединенной с гальванометром, вводить постоянный маг­нит, то стрелка гальванометра будет отклоняться, т. е. в катушке появится ток. При выведении магнита, стрелка снова отклонится, но в другую сторону.

image010Электромагнитная индукция — это явление возникновения ЭДС в контуре под действием переменного магнитного поля. Электрический ток, вызванный этой ЭДС, называется индукци­онным током.

Силу, действующую на электрический заряд, движущийся в магнитном поле, называют силой Лоренца. Под действием этой силы осуществляется смещение электронов на один конец про­водника, оставляя в избытке положительные заряды на другом конце проводника, в результате чего между концами проводника возникает разность потенциалов.

Если концы проводника не замкнуты, то разность

потенциалов между ними численно равна ЭДС. При длине провода lЭДС электро­магнитной индукции определится:

Е = Bvl.

Направление ЭДС индукции на практи­ке определяют по правилу правой руки (рис.7.1). Если расположить правую руку так, чтобы линии магнитной индукции входили в ладонь, отогнутый под прямым углом большой палец показывал направле­ние движения проводника, то вытянутые четыре пальца покажут направление ЭДС индукции.

Источник

ЭДС при движении проводника в поле

ЭДС при движении проводника в магнитном поле.

При движении перемычки К на электроны действует сила Лоренца, совершающая работу. Электроны перемещаются отС к А. Перемычка – источник ЭДС. Следовательно

image001

image002 45

Эта формула используется в любом проводнике, движущемся в магнитном поле, если image003 0 ↑↑ image004 51.

Если между векторами image003 0и image004 51 есть угол, то используется формула

image007 5

image007 5

image009 4

Другой способ вывода формулы эдс в движущемся проводнике.

Т.к. – электроны начинают под действием силы Лоренца перемещаться к одному из концов проводника, то возникает электрическое поле. Оно будет возрастать до тех пор, пока электрическая сила не уравновесит силу Лоренца. image011 7.

Учитывая, что image012 38, получим: image013 9.

Явление существенно при движении проводников значительной длины или с большой скоростью, например, при полете самолета (в магнитном поле Земли).

Знак можно определить по правилу правой руки Правило правой руки для индукционного тока. Если правую руку расположить так, чтобы линии магнитной индукции (В) входили в ла­донь, а отогнутый большой палец по­казывал направление движения провод­ника, то четыре вытянутых пальца ука­жут направление индукционного тока в проводнике.

Вихревое электрическое поле

Электроны в проводниках вторичной обмотки приводятся в движение элект­рическим полем (ЭП), которое порож­дается переменным магнитным полем (МП).

image014 32

Фундаментальное свойство поля.

ЭП, порождаемое переменным МП, не связано с зарядом; силовые линии нигде не начинаются и не кончаются, т. е. линии замкнутые. Такое поле — вихревое электрическое.

image015 10

Токи Фуко

Индукционный ток в массивных проводниках называют то­ками Фуко.

Используют: плавка металлов в вакууме. Вредное действие: бесполезная потеря энергии в сердечниках трансформаторов и в генераторах.

Источник

Что такое ЭДС индукции и когда возникает?

В материале разберемся в понятии ЭДС индукции в ситуациях ее возникновения. Также рассмотрим индуктивность в качестве ключевого параметра возникновения магнитного потока при появлении электрического поля в проводнике.

indukcia

Электромагнитная индукция представляет собой генерирование электрического тока магнитными полями, которые изменяются во времени. Благодаря открытиям Фарадея и Ленца закономерности были сформулированы в законы, что ввело симметрию в понимание электромагнитных потоков. Теория Максвелла собрала воедино знания об электрическом токе и магнитных потоках. Благодаря открытия Герца человечество узнало о телекоммуникациях.

Магнитный поток

Вокруг проводника с электротоком появляется электромагнитное поле, однако параллельно возникает также обратное явление – электромагнитная индукция. Рассмотрим магнитный поток на примере: если рамку из проводника поместить в электрическое поле с индукцией и перемещать ее сверху вниз по магнитным силовым линиям или вправо-влево перпендикулярно им, тогда магнитный поток, проходящий через рамку, будет постоянной величиной.

При вращении рамки вокруг своей оси, тогда через некоторое время магнитный поток изменится на определенную величину. В результате в рамке возникает ЭДС индукции и появится электрический ток, который называется индукционным.

Читайте также:  лодейное поле установка стеклопакетов

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

Движение провода в магнитном поле

Значение индуктированной ЭДС определяется в зависимости от длины проводника, пересекаемого силовыми линиями поля. При большем количестве силовых линий возрастает величина индуктируемой ЭДС. При увеличении магнитного поля и индукции, большее значение ЭДС возникает в проводнике. Таким образом, значение ЭДС индукции в движущемся в магнитном поле проводнике находится в прямой зависимости от индукции магнитного поля, длины проводника и скорости его движения.

Данная зависимость отражена в формуле Е = Blv, где Е — ЭДС индукции; В — значение магнитной индукции; I — длина проводника; v —скорость его перемещения.

Отметим, что в проводнике, который движется в магнитном поле, ЭДС индукции появляется, только когда он пересекает силовые линии магнитного поля. Если проводник движется по силовым линиям, тогда ЭДС не индуктируется. По этой причине формула применяется только в случаях, когда движением проводника направлено перпендикулярно силовым линиям.

Направление индуктированной ЭДС и электротока в проводнике определяется направлением движения самого проводника. Для выявления направления разработано правило правой руки. Если держать ладонь правой руки таким образом, чтобы в ее направлении входили силовые линии поля, а большой палец указывает направление движения проводника, тогда остальные четыре пальца показывают направление индуктированной ЭДС и направление электротока в проводнике.

Вращающаяся катушка

Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).

Согласно формуле, на Ф воздействуют изменения в ситуациях:

Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.

На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.

ЭДС самоиндукции

При прохождении через катушку переменного электротока генерируется переменное магнитное поле, которое характеризуется меняющимся магнитным потоком, индуцирующим ЭДС. Данное явление называется самоиндукцией.

В силу того, что магнитный поток пропорционален интенсивности электротока, тогда формула ЭДС самоиндукции выглядит таким образом:

Ф = L x I, где L – индуктивность, которая измеряется в Гн. Ее величина определяется числом витков на единицу длины и величиной их поперечного сечения.

Источник

Оцените статью
Мой дом
Adblock
detector