электрическое поле бесконечной равномерно заряженной плоскости

§ 1.12. Поле заряженной плоскости, сферы и шара

Поле равномерно заряженной бесконечной плоскости

Когда заряд распределен по какой-либо поверхности, то для расчета полей удобно ввести поверхностную плотность заряда с. Выделим на плоской поверхности маленький участок площадью ΔS. Пусть заряд этого участка равен Δq. Поверхностной плотностью заряда называют отношение заряда Δq к площади поверхности, по которой он распределен:

65 1

Эта плотность может непрерывно изменяться вдоль поверхности. Конечно, электрический заряд имеет дискретную (прерывную) структуру, так как сосредоточен в элементарных частицах. Но если на поверхности площадью ΔS содержится огромное число элементарных зарядов, то дискретную структуру заряда можно не принимать во внимание. Мы ведь пользуемся понятием плотности, считая, что масса непрерывно распределена в пространстве. А на самом деле все тела состоят из дискретных образований — атомов.

В случае равномерного распределения заряда q по поверхности площадью S поверхностная плотность заряда постоянна и равна:

65 2

Рассмотрим бесконечную равномерно заряженную плоскость. Поверхностная плотность заряда σ известна. Из соображений симметрии очевидно, что линии напряженности представляют собой прямые, перпендикулярные плоскости. Поле бесконечной плоскости — однородное поле. Во всех точках пространства, независимо от расстояния до плоскости, напряженность поля одна и та же.

Для применения теоремы Гаусса нужно выбрать замкнутую поверхность таким образом, чтобы можно было легко вычислить поток напряженности электрического поля через эту поверхность. В данном случае удобнее всего выбрать цилиндр, образующие которого параллельны линиям напряженности электрического поля, а основания параллельны плоскости (рис. 1.43).

1.43

Тогда поток через боковую поверхность цилиндра будет равен нулю. Поэтому полный поток равен потоку через основания цилиндра А и В:

66 1

где Еn — проекция вектора напряженности на нормаль к основанию цилиндра. Полный заряд внутри цилиндра равен σS. Согласно теореме Гаусса

66 2

Отсюда модуль напряженности равен:

66 3

В СИ эта формула принимает вид:

66 4

а в абсолютной системе

66 5

Поле равномерно заряженной сферы

Поток напряженности электрического поля через любую замкнутую поверхность внутри сферы равен нулю, так как равен нулю заряд. Это может быть лишь в том случае, когда напряженность поля внутри сферы равна нулю.

Найдем напряженность поля вне сферы. Из соображений симметрии ясно, что линии напряженности начинаются на поверхности сферы (в случае положительного заряда), направлены по радиусам сферы и перпендикулярны ее поверхности (рис. 1.44). Поэтому модуль напряженности поля одинаков во всех точках, лежащих на одинаковых расстояниях от центра сферы.

1.44

Проведем сферическую поверхность радиусом r > R, где R — радиус заряженной сферы. Поток напряженности через эту поверхность равен:

67 1

Если заряд сферы q, то по теореме Гаусса

67 2

Следовательно, модуль напряженности поля при r > R равен:

67 3

Таким образом, поле заряженной сферы совпадает вне сферы с полем точечного заряда, расположенного в центре сферы. График зависимости Е(r) изображен на рисунке 1.45.

1.45

Поле равномерно заряженного шара

Для характеристики распределения заряда по объему используется понятие объемной плотности заряда. Объемной плотностью заряда называется отношение заряда Δq к объему ΔV, в котором он распределен:

67 4

Эта плотность может непрерывно изменяться внутри заряженного тела. Если заряд q равномерно распределен по объему V, то объемная плотность заряда постоянна и равна:

68 1

Будем считать, что шар радиусом R равномерно заряжен; плотность заряда ρ известна. Полный заряд шара

68 2

Напряженность электрического поля вне шара можно найти с помощью теоремы Гаусса точно так же, как и напряженность равномерно заряженной сферы [см. формулу (1.12.9)]:

68 3

(при условии, что r > R). Поле аналогично полю точечного заряда q, расположенного в центре шара.

Читайте также:  оби краска для обоев под покраску для стен

Для нахождения поля внутри шара нужно применить теорему Гаусса к потоку напряженности через сферическую поверхность радиусом к

Напряженность электрического поля линейно растет с увеличением расстояния вплоть до u = R. При r > R она определяется формулой (1.12.12). График модуля напряженности поля в зависимости от расстояния до центра представлен на рисунке 1.47.

1.47

Теорема Гаусса позволяет сравнительно просто определить напряженность электрического поля, если распределение заряда обладает определенной симметрией. Формулы (1.12.5), (1.12.9) и (1.12.15) следует запомнить. Их придется часто использовать.

Вопрос для самопроверки

* Мы предполагаем, что диэлектрическая проницаемость среды одинакова внутри и вне шара.

Источник

Учебники

Журнал «Квант»

Общие

§9. Электрическое поле и его свойства

9.6. Поле равномерно заряженной плоскости

Решим задачу, которая нам неоднократно понадобится в дальнейшем. Пусть электрическое поле создается зарядами, которые равномерно распределены по бесконечной плоскости.

Конечно, в реальности бесконечно больших поверхностей не существует. В данном случае, мы подразумеваем, что точка A, в которой рассчитывается напряженность поля, находится на расстоянии h от плоскости, которое значительно меньше расстояний до краев заряженного участка (рис. 165). В этом случае влияние зарядов, расположенных достаточно далеко от рассматриваемой точки становится пренебрежимо малым. Проводить расчеты для бесконечно больших плоскостей оказывается проще, чем для конечных участков.

Img Slob 10 9 165

В качестве характеристики распределения зарядов введем величину σ — поверхностную плотность заряда. Выберем на плоскости произвольную точку с координатами (x, y), окружим ее малой площадкой площадью ΔS. Пусть заряд этой выделенной площадки равен ΔQ, тогда средняя поверхностная плотность заряда определяется как отношение заряда площадки к ее площади \(

Для равномерно заряженной поверхности поверхностная плотность заряда постоянна σ(x, y) = σ = const.

Для расчета напряженности поля воспользуемся законом Ш. Кулона и принципом суперпозиции.

Разобьем заряженную плоскость на малые участки. Такое разбиение можно проводить различными способами. Расчеты упрощаются, если мыс-ленно разбить плоскость на тонкие кольца, а затем каждое кольцо разделить на малые участки (рис. 166).

Img Slob 10 9 166

Каждый малый участок плоскости можно рассматривать как точечный заряд величиной ΔQ = σ·ΔS, который создает поле, вектор напряженности которого \(

\Delta \vec E\) направлен вдоль прямой, соединяющий заряд с точкой наблюдения A (рис. 167).

Img Slob 10 9 167

Полная напряженность электрического поля будет равна векторной сумме напряженностей полей, создаваемых отдельными участками плоско-сти. Ясно, что результирующий вектор напряженности будет направлен перпендикулярно плоскости (обозначим это направление осью z). Действительно, для каждого заряда ΔQ найдется симметрично расположенный заряд ΔQ´, сумма векторов напряженностей полей \(

Вычислим напряженность поля, создаваемого равномерно заряженным кольцом, в точке находящейся на оси кольца на расстоянии h от его центра.

Разобьем кольцо на малые участки, заряд каждого из них обозначим ΔQi. В точке наблюдения вектор напряженность поля \(

r = \sqrt\) — расстояние от заряда то точки наблюдения.

Как мы показали, результирующий вектор напряженности направлен вдоль оси кольца. Поэтому для его расчета достаточно просуммировать проекции векторов \(

\Delta \vec E\) на эту ось \(

Так как все заряды находятся на равных расстояниях r от точки наблюдения, а векторы \(

\Delta \vec E_i\) образуют равные углы α с осью Z, вычисление этой суммы сводится суммированию зарядов (постоянные множители можно вынести за знак суммы):

Заметим, что в центре кольца напряженность поля равна нулю, затем с ростом h напряженность поля возрастает до некоторого максимального значения, после чего начинает монотонно убывать. Причем на больших расстояниях при h >> R в формуле (2) можно пренебречь R в знаменателе, при этом напряженность поля определяется формулой \(

Img Slob 10 9 168

Далее для вычисления напряженности поля, созданного всей плоско-стью, необходимо просуммировать выражения (2) по всем кольцам, на которые была разбита плоскость. Такое суммирование, в принципе, можно провести, но этот расчет требует привлечения операции интегрирования, поэтому заниматься этим не будем. Тем более, что результат можно получит гораздо быстрее, использую теорему Гаусса.

Для использования этой теоремы для определения напряженности поля, необходимо рассмотреть симметрию поля, которая, очевидно связана с симметрией зарядов. Распределение зарядов не изменится, если плоскость сместить на любой вектор \(

Читайте также:  телекоммуникационный настенный шкаф цмо 19 6u дверь стекло

Img Slob 10 9 169

Следовательно, напряженность поля может зависеть только от расстояния до плоскости h. Любая прямая, перпендикулярная плоскости является осью симметрии, то есть при повороте плоскости на любой угол относительно любой оси, перпендикулярной плоскости, распределение зарядов не изменяется — следовательно, и вектор напряженности при таком повороте не изменится, поэтому этот вектор должен быть перпендикулярен плоскости. Наконец, заряженная плоскость является плоскостью симметрии для поля. Поэтому в симметричных точках векторы напряженности также симметричны. Выявленные свойства симметрии электрического поля позволяют выбрать поверхность, для которой можно выразить поток вектора напряженности в простой форме. Итак, в качестве такой поверхности выберем поверхность прямого цилиндра, образующие которого перпендикулярны плоскости, а основания площадью S параллельны ей и находятся на равных расстояниях от плоскости.

Прежде всего, заметим, что поток вектора напряженности через боковую поверхность цилиндра равен нулю, так как во всех точках боковой поверхности векторы напряженности \(

\vec n\) взаимно перпендикулярны (поэтому cos α = 0) (рис. 170).

Img Slob 10 9 170

Как видите, с использованием теоремы Гаусса нам удалось решить по-ставленную задачу «в одно действие». Главная составляющая успеха — анализ симметрии поля, позволивший разумно выбрать поверхность, для использования теоремы Гаусса. Также обратите внимание, что напряженность данного поля одинакова во всех точках, следовательно, это поля является однородным. Подчеркнем, независимость напряженности поля от расстояния до плоскости h никак не следует из симметрии поля, это результат нашего расчета.

Источник

Электрическое поле. Напряженность. Принцип суперпозиции

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Единицы измерения: \(\displaystyle [\text<В>/\text<м>]\) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

f t 3 2

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда \(q\) по поверхности площади \(S\) поверхностная плотность заряда \(\displaystyle \sigma\) постоянна и равна

Принцип суперпозиции полей

f t 3 3

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Заряженный шар

Источник

Учебники

Журнал «Квант»

Общие

Теорема Остроградского—Гаусса и ее применение для расчета электростатических полей

Img T 66 002

Пусть поле создается точечным электрическим зарядом q. Проведем замкнутую сферическую поверхность площадью S (рис. 2), окружающую этот заряд, центр которой совпадает с точкой нахождения заряда. Вычислим поток вектора напряженности через эту поверхность. За положительное направление нормали выберем направление внешней нормали \(

\vec n\). В этом случае во всех точках сферической поверхности E = const и cos α = 1.

Модуль напряженности поля на расстоянии R от заряда \(

Следовательно, поток вектора напряженности через сферическую поверхность

Полученный результат будет справедлив и для поверхности произвольной формы, а также при любом расположении заряда внутри этой поверхности. Действительно, если окружить сферу произвольной замкнутой поверхностью (рис. 2, а — поверхность изображена штрихами), то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 2, б), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в поверхность, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линии, входящей в поверхность. Если же внутри поверхности площадью S1 (см. рис. 2) заряды отсутствуют, то поток напряженности через эту поверхность равен нулю (NS = 0).

Читайте также:  3д обои на всю комнату

Img T 66 003

Если рассматриваемая поверхность охватывает не один, а несколько электрических зарядов, то под q следует понимать алгебраическую сумму этих зарядов (рис. 3) и

Эта формула выражает теорему Остроградского—Гаусса: поток вектора напряженности через замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на произведение электрической постоянной и диэлектрической проницаемости среды.

Применим эту теорему для расчета электростатических полей некоторых проводников.

Равномерно заряженная бесконечная плоскость

Пусть σ — поверхностная плотность заряда на плоскости (рис. 4).

Img T 66 004

В качестве поверхности площадью S выберем цилиндрическую поверхность, образующая которой перпендикулярна плоскости. Основания этого цилиндра расположены перпендикулярно линиям напряженности по обе стороны от плоскости. Так как образующие цилиндра параллельны линиям напряженности (α = 90°, cos α = 0), то поток через боковую поверхность цилиндра отсутствует, и полный поток через поверхность цилиндра равен сумме потоков через два основания: N = 2ES. Внутри цилиндра заключен заряд q = σS, поэтому, согласно теореме Остроградского-Гаусса, \(

2ES = \frac<\sigma S><\varepsilon_0 \varepsilon>\), где ε = 1 (для вакуума), откуда следует, что напряженность поля равномерно заряженной бесконечной плоскости

Бесконечная равномерно заряженная нить

Пусть τ — линейная плотность заряда нити. Выделим участок нити длиной Δl и окружим его цилиндрической поверхностью, расположенной так, что ось цилиндра совпадает с нитью (рис. 5).

Img T 66 005

Линии напряженности электростатического поля, создаваемого нитью в сечении, перпендикулярном самой нити, направлены перпендикулярно боковой поверхности цилиндра, поэтому поток напряженности сквозь боковую поверхность \(

N = E \cdot 2 \pi R \Delta l\), где R — радиус цилиндра. Через оба основания цилиндра поток напряженности равен нулю (α = 90°, cos α = 0). Тогда полный поток напряженности через выделенный цилиндр

Заряд, находящийся внутри этого цилиндра, q = τ · Δl.

Согласно теореме Остроградского—Гаусса, можно записать \(

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 220-222.

Источник

Поле бесконечной равномерно заряженной плоскости. Поле плоского конденсатора

Пусть электрическое поле создаётся зарядом, равномерно распределённым по поверхности безграничной плоскости, с поверхностной плотностью s (рис. 2.8.)

image201

image204

Из симметрии задачи следует, что поле повсюду направлено перпендикулярно к поверхности. Выясним, как меняется напряжённость поля по мере удаления от заряженной плоскости.

В качестве гауссовой поверхности удобно выбрать цилиндр. Ось цилиндра направим перпендикулярно плоскости, его основание расположим на расстоянии Х симметрично по обе стороны от поверхности.

Вычислим поток вектора напряжённости через боковую поверхность и основания цилиндра. Как следует из рис. 2.8., поток вектора напряжённости image056через боковую поверхность цилиндра равен нулю, так как здесь повсюду векторы напряжённости «скользят» по поверхности и image187.

Тогда полный поток через замкнутую цилиндрическую поверхность можно записать как поток через два основания цилиндра.

image207(2.14)

Это величина, рассчитанная по определению потока.

Теперь воспользуемся теоремой Гаусса, заметив, что заряд q, «находящийся внутри гауссовой поверхности», в данном случае сосредоточен на площадке S = Sосн, «вырезанной» цилиндром на бесконечной плоскости

image209(2.15)

Объединим результаты(2.15) и (2.14) в уравнение Гаусса:

image211

image213(2.16)

Вывод. Поле, созданное бесконечной равномерно заряженной плоскостью, однородно. Оно не меняется с расстоянием от заряженной поверхности ни по величине, ни по направлению.

Теперь рассмотрим еще один важный пример. Пусть поле создаётся двумя бесконечными плоскостями, заряженными разноименно, но с одинаковой по величине поверхностной плотностью заряда (рис. 2.9.). Это важная идеализация электростатики — плоский конденсатор. Каждая обкладка этого конденсатора создаёт однородное поле, напряжённость которого мы только что установили (2.16):

image215.

image223

Силовые линии поля положительно заряженной плоскости направлены от неё, а отрицательной — к плоскости. При сложении этих полей, напряжённость результирующего поля вне конденсатора оказывается равной нулю, а внутри конденсатора, где эти поля совпадают по направлению, — поле удваивается:

image225. (2.17)

Дата добавления: 2015-08-08 ; просмотров: 907 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Оцените статью
Мой дом
Adblock
detector