электрическое поле магнитное поле электромагнитное поле

Содержание
  1. Шаг за шагом
  2. Электрическое, магнитное и электромагнитное поле
  3. Электрическое и магнитное поле: в чем различия
  4. Электрическое и магнитное поле: в чем различия
  5. Два поля
  6. Как происходит взаимодействие электрического и магнитного полей
  7. Сравнение полей: электрического и магнитного
  8. «Законодательная база»
  9. Подведем итог
  10. Похожие статьи по теме
  11. Поделитесь своим мнением Отменить ответ
  12. Популярное на сайте
  13. Опросы
  14. Электромагнитные волны для «чайников». Что излучает телефон?
  15. Что такое электромагнитное поле? Или о логических противоречиях
  16. Что такое электрическое поле?
  17. Что такое магнитное поле?
  18. Что такое электромагнитное излучение? Или о том, как работает телефон
  19. Камеры смартфонов с матрицами Sony и Samsung. Что такое Tetracell и Quad Bayer?
  20. Что такое сенсор глубины на смартфоне? Или почему портретный режим превратился в инструмент для обмана
  21. 5G для «чайников». Что такое 5G, как это работает и зачем нужно?
  22. Осторожно, AMOLED-экран! Всё, что нужно знать о вреде мерцания и ШИМ
  23. Биоимпедансный анализ для «чайников». Как смарт-часы и весы научились определять состав тела?
  24. Сон и фитнес-браслеты. Руководство для чайников
  25. Сканер отпечатка пальца на смартфоне. Как работает и что лучше — емкостный, оптический или ультразвуковой?
  26. Что такое энергия? Или таинственная материя, которую создают гаджеты

Шаг за шагом

Электрическое, магнитное и электромагнитное поле

Основная трудность состоит в том, что невозможно представить себе какую-нибудь модель поля подобно тому, как мы рисуем в своем воображении упрощенную модель атома. Понятие об электрическом, магнитном и электромагнитном полях лучше всего взять из простейших опытов. Затем можно будет дополнить и развивать эти понятия, используя огромные достижения математики и физики в области изучения полей.

Электрическое поле возникает вокруг всякого электрического заряда или вокруг предмета, на котором имеется избыток зарядов какого-нибудь одного знака. Мы потерли о шерсть пластмассовую палочку дли обычную гребенку, создав на ней избыток отрицательных зарядов, и пространство вокруг гребенки приобрело какие-то особые свойства: мелкие клочки бумаги, попадая в это пространство, начинают притягиваться к ней. Каким образом наэлектризованная гребенка действует на клочки бумаги? Может быть, действие электрических сил передается через частицы окружающего воздуха?

ris25

Ни в коем случае! Если мы проделаем свой опыт в пустоте, то клочки бумаги будут так же притягиваться к гребенке, как и в воздухе или в каком-либо другом газе (рис. 25). Значит, дело здесь не в молекулах, атомах или других частицах окружающей среды. Значит, вокруг электрического заряда (в данном случае вокруг наэлектризованной гребенки) существует какое-то особое состояние пространства, какая-то особая форма материи, через которую и передается действие электрических сил. Эта особая форма материи, существующая наряду с такой известной нам формой материи, как вещество, и есть электрическое поле.

Науке уже многое известно об электрическом поле. Известно, например, что оно обладает определенной массой и запасом энергии (в нашем опыте эта энергия расходуется на перемещение к гребенке клочков бумаги). Многого об электрическом поле мы еще не знаем, однако факт его существования, подтвержденный многочисленными опытами, не может вызывать никаких сомнений.

Электромагнитное поле имеет черты как электрического поля (как говорят, имеет электрическую составляющую), так и магнитного поля (магнитная составляющая). Это значит, что электромагнитное поле могло бы при определенных условиях и поворачивать стрелку компаса, подобно магнитному полю, и перемещать электрические заряды, подобно электрическому полю. Электрическая и магнитная составляющие тесно связаны между собой, и каждая из них обладает запасом энергии, определяющим энергию всего электромагнитного поля.

Источник

Электрическое и магнитное поле: в чем различия

Термином «поле» в русском языке обозначают очень большое пространство однородного состава, например, пшеничное или картофельное.

В физике и электротехнике его используют для описания различных видов материи, например, электромагнитной, состоящей из электрической и магнитной составляющих.

1460361203 jelektricheskoe i magnitnoe pole

Электрический заряд связан с этими формами материи. Когда он неподвижен, то вокруг него всегда есть электрическое поле, а при движении образуется еще и магнитное.

Представление человека о природе электрического (более точное определение — электростатического) поля сложилось на основе исследований опытным путем его свойств, ибо другого метода изучения пока не существует. При этом способе выявлено, что оно воздействует на движущиеся и/или неподвижные электрические заряды с определенной силой. По измерениям ее величины оценивают основные эксплуатационные характеристики.

1460361256 jelektricheskoe pole zarjada

вокруг электрических зарядов (тел или частиц);

при изменениях магнитного поля, как, например, происходит во время перемещения электромагнитных волн.

Изображают его силовыми линиями, которые принято показывать исходящими из положительных зарядов и оканчивающимися на отрицательных. Таким образом, заряды являются источниками электрического поля. По действию на них можно:

выявить наличие поля;

ввести калиброванную величину для измерения его значения.

1460361200 magnitnoe pole

электрические тела и заряды, находящиеся в движении с определённым усилием;

магнитные моменты без учета состояний их движения.

Магнитное поле создается:

прохождением тока заряженных частиц;

суммированием магнитных моментов электронов внутри атомов или других частиц;

при временном изменении электрического поля.

Его тоже изображают силовыми линиями, но они замкнуты по контуру, не имеют начала и конца в противоположность электрическим.

Взаимодействие электрического и магнитного полей

Первое теоретическое и математическое обоснование процессов, происходящих внутри электромагнитного поля, выполнил Джеймс Клерк Максвелл. Он представил систему уравнений дифференциальной и интегральной форм, в которых показал связи электромагнитного поля с электрическими зарядами и протекающими токами внутри сплошных сред либо вакуума.

В своем труде он использовал законы:

Ампера, описывающие протекание тока по проводнику и создание вокруг него магнитной индукции;

Фарадея, объясняющего возникновение электрического тока от воздействия переменного магнитного поля на замкнутый проводник.

1460361287 jelektricheskoe i magnitnoe pole

1460361250 peremennyjj potok magnitnogo polja

Труды Максвелла определили точные соотношения между проявлениями электрических и магнитных полей, зависящих от распределенных в пространстве зарядов.

1460361279 izobrazhenie jelektromagnitnogo polja

После публикации работ Максвелла прошло уже много времени. Ученые постоянно изучают проявления опытных фактов между электрическими и магнитными полями, но даже сейчас не особо получается выяснить их природу. Результаты ограничиваются чисто практическим применением рассматриваемых явлений.

Объясняется это тем, что с нашим уровнем знаний можно только строить гипотезы, ибо пока мы способны лишь предполагать что-то. Ведь природа обладает неисчерпаемыми свойствами, которые еще предстоит много и длительно изучать.

Сравнительная характеристика электрического и магнитного полей

Взаимную связь между полями электричества и магнетизма помогает понять очевидный факт: они не обособленны, а связаны, но могут проявляться по-разному, являясь единым целым — электромагнитным полем.

Если представить, что в какой-то точке пространства создано неоднородное поле электрического заряда, неподвижное относительно поверхности Земли, то определить вокруг него магнитное поле в состоянии покоя не получится.

1460361249 jelektricheskoe i magnitnoe pole po

Если же наблюдатель начнет перемещаться относительно этого заряда, то поле станет меняться по времени и электрическая составляющая образует уже магнитную, которую сможет увидеть своими измерительными приборами настойчивый исследователь.

Аналогичным образом эти явления проявятся тогда, когда на какой-то поверхности расположен неподвижный магнит, создающий магнитное поле. Когда наблюдатель станет перемещаться относительно него, то он обнаружит появление электрического тока. Этот процесс описывает явление электромагнитной индукции.

Поэтому говорить о том, что в рассматриваемой точке пространства имеется только одно из двух полей: электрическое или магнитное, не имеет особого смысла. Этот вопрос надо ставить применительно к системе отсчета:

Другими словами, система отсчета влияет на проявление электрического и магнитного поля таким же образом, как рассматривание пейзажей сквозь светофильтры различных оттенков. Изменение цвета стекол влияет на наше восприятие общей картинки, но, оно, даже если принять за основу естественный свет, создаваемый проходом солнечных лучей через воздушную атмосферу, не даст истинной картины в целом, исказит ее.

Значит, система отсчета является одним из способов изучения электромагнитного поля, позволяет судить о его свойствах, конфигурации. Но, она не обладает абсолютной значимостью.

Индикаторы электромагнитных полей

Электрически заряженные тела используют в качестве индикаторов, указывающих на наличие поля в определенном месте пространства. Ими, для наблюдения электрической составляющей, могут использоваться наэлектризованные мелкие кусочки бумаги, шарики, гильзы, «султаны».

1460361284 issledovanie jelektrostaticheskogo polja

Рассмотрим пример, когда по обе стороны плоского наэлектризованного диэлектрика расположены на свободном подвесе два индикаторных шарика. Они будут одинаково притягиваться к его поверхности и вытянутся в единую линию.

На втором этапе между одним из шариков и наэлектризованным диэлектриком поместим плоскую металлическую пластину. Она не изменит действующие на индикаторы силы. Шарики не поменяют свое положение.

Третий этап эксперимента связан с заземлением металлического листа. Сразу только как это произойдет, индикаторный шарик, расположенный между наэлектризованным диэлектриком и заземленным металлом, изменит свое положение, сменив направление на вертикальное. Он перестанет притягиваться к пластине и будет подвержен только гравитационным силам тяжести.

Этот опыт показывает, что заземленные металлические экраны блокируют распространение силовых линий электрического поля.

В этом случае индикаторами могут выступать:

замкнутый контур с протекающим по нему электрическим током;

магнитная стрелка (пример с компасом).

1460361219 stalnye opilki

Принцип распределения опилок из стали вдоль магнитных силовых линий является наиболее распространенным. Он же заложен в работу магнитной стрелки, которая, для уменьшения противодействия сил трения, закрепляется на остром наконечнике и этим получает дополнительную свободу для вращения.

Законы, описывающие взаимодействия полей с заряженными телами

Прояснению картины процессов, происходящих внутри электрических полей, послужили опытные работы Кулона, осуществляемые с точечными зарядами, подвешенными на тонкой и длинной нити из кварца.

1460361276 opyty kulona

Когда к ним приближали заряженный шарик, то последний влиял на их положение, заставляя отклоняться на определенную величину. Это значение фиксировалось на лимбе шкалы специально сконструированного прибора.

Таким способом были выявлены силы взаимного действия между электрическими зарядами, называемые электрическим, Кулоновским взаимодействием. Они описаны математическими формулами, позволяющими проводить предварительные расчеты проектируемых устройств.

1460361257 zakon kulona

Здесь хорошо работает закон, описанный Ампером на основе взаимодействия проводника с током, размещенного внутри магнитных силовых линий.

Читайте также:  ремонт дверных откосов после установки железной двери

1460361279 zakon ampera

Для направления действия силы, осуществляющей воздействие на проводник с протекающим по нему током, применяют правило, использующее расположение пальцев на левой руке. Четыре соединенных вместе пальца необходимо расположить по направлению тока, а силовые линии магнитного поля должны входить в ладонь. Тогда оттопыренный большой палец укажет направление действия искомой силы.

Графические изображения полей

Для их обозначения на плоскости чертежа используются силовые линии.

Для обозначения линий напряженности в этой ситуации используют потенциальное поле, когда имеются неподвижные заряды. Силовая линия выходит из положительного заряда и направляется в отрицательный.

Примером моделирования электрического поля может служить вариант размещения кристаллов хинина в масле. Более современным способом считается использование компьютерных программ графических проектировщиков.

Они позволяют создавать изображения эквипотенциальных поверхностей, судить о численном значении электрического поля, анализировать различные ситуации.

1460361200 modelirovanie jelektricheskogo polja

У них для наглядности отображения применяются линии, характерные для вихревого поля, когда они замкнуты единым контуром. Приведенный ранее пример со стальными опилками наглядно отображает это явление.

Их принято выражать векторными величинами, имеющими:

определённое направление действия;

значение силы, рассчитываемое по соответствующей формуле.

Вектор напряженности электрического поля у единичного заряда можно представить в форме трехмерного изображения.

1460361282 naprjazhennost jelektricheskogo polja

направлена от центра заряда;

имеет размерность, зависящую от способа вычисления;

определяется бесконтактным действием, то есть на расстоянии, как отношение действующей силы к заряду.

Напряженность, возникающую в катушке, можно рассмотреть на примере следующей картинки.

1460361191 naprjazhennost magnitnogo polja katushki

Силовые магнитные линии в ней от каждого витка с внешней стороны имеют одинаковое направление и складываются. Внутри межвиткового пространства они направлены встречно. За счет этого внутреннее поле ослаблено.

На величину напряженности влияют:

сила проходящего по обмотке тока;

количество и плотность намотки витков, определяющих осевую длину катушки.

Повышенные токи увеличивают магнитодвижущую силу. Кроме того, в двух катушках с равным числом витков, но разной плотностью их намотки, при прохождении одного и того же тока эта сила будет выше там, где витки расположены ближе.

Таким образом, электрическое и магнитное поля имеют совершенно определенные отличия, но являются взаимосвязанными составляющими единого общего — электромагнитного.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Электрическое и магнитное поле: в чем различия

Такой термин, как «поле» в нашем языке имеет общее, достаточно обширное понятие (например, картофельное или футбольное). А вот в точных науках, таких как физика и электротехника — это название применяется для того, чтобы описать определенные виды материи. Так, электромагнитная материя представляет собой две составных части: электрическую и магнитную.

pool22

С указанными формами материи непосредственно связан электрический заряд. И у этого заряда имеется характерная особенность. В неподвижном состоянии вокруг него постоянно существует электрическое поле, а как только заряд начинает осуществлять направленное движение, то появляется еще и магнитное поле. Рассмотрим характерные особенности электрического и магнитного полей по отдельности.

Два поля

slide 3

В процессе проведения исследований и в целях боле эффективного практического применения данного явления, ему дано название напряженность. Оценивается по степени воздействия на единичный (с положительным знаком) заряд.

slide 1

Здесь также применяется метод графического изображения при помощи силовых пунктирных линий. Но в отличие от схематического изображения электрического поля, эти линии замкнуты по контуру и не имеют определенной точки начала (равно, как и конца).

Как происходит взаимодействие электрического и магнитного полей

Первые достаточно точные обоснования и выводы (как теоретические, так и практические) по результатам исследований процессов внутри данных полей сделал великий ученый Д. Максвелл. Он показал, какая взаимосвязь происходит между эклектическими зарядами и протекающими токами электромагнитного поля. Для проведения исследований и получения результатов, были применены ранее сформулированные законы Ампера и Фарадея. В трудах физика было определено точное соотношение между электрическим и магнитным полем, которое возникало вследствие определенного способа распределения зарядов в пространстве.

img17

Сравнение полей: электрического и магнитного

Важно понять, что электрическое и магнитное поле – это не обособленные понятия, а единый комплекс, получивший название электромагнитного поля. Следовательно, и изучать это поле необходимо параллельно, относясь к исследуемому явлению, как к единому целому.

Утверждение, что в какой-либо определенной точке пространства может иметься только одно из действующих полей, не может быть принято во внимание, более того – оно бессмысленно. Вопрос может быть поставлен исключительно с учетом типа исследуемой системы, которая может быть стационарной или подвижной.

В целом, сама система отсчета – это составная часть исследования электромагнитного поля. По характеристикам системы можно делать оценку, касательно свойств и конфигурации электромагнитного поля. Но абсолютной значимости система не имеет.

Что может быть применено в качестве индикаторов электромагнитного поля

Для электрического поля – это заряженные тела. Именно они указывают на наличие в определенном месте пространства поля. При проведении опытов и наблюдений широко используются такие подручные материалы, как:

– мелкие кусочки бумаги;

– небольшие комочки, бумажные шарики;

– так называемые «султаны».

Чтобы «увидеть» магнитное поле, можно использовать стальные опилки либо замкнутый контур, по которому протекает электрический ток. Еже проще – использовать магнитную стрелку, которая имеется на каждом компасе.

ris25

«Законодательная база»

Исследование полей, магнитного и электрического, осуществляется по ранее открытым физическим законам. Так, для электрического поля, при исследовании протекающих внутри него процессов, бесценную помощь оказали исследования и опыты, проведенные кулоном. Магнитное поле проще себе представить, воспользовавшись законом Ампера, применительно к расположению ладони человека. Так, чтобы определить направление действия силы, воздействующей на проводник, необходимо расположить ладонь следующим образом:

– 4 пальца, сложенные вместе, указывают на направление протекающего тока;

– силовые линии магнитного поля входят в ладонь;

– большой палец руки, находящийся под углом в 90 градусов по отношению к другим пальцам ладони, укажет направление воздействия искомой силы.

Подведем итог

В заключении необходимо отметить: электрическое и магнитное поля существенно отличаются друг от друга. Но это не мешает им тесно взаимодействовать, оставаясь составными частями одного целого – электромагнитного поля!

Похожие статьи по теме

period peremennogo toka 300x203

elektrik 300x220

maxresdefault 300x169

%D0%92%D0%BE%D0%BF%D1%80%D0%BE%D1%81%D1%8B %D0%B4%D0%BB%D1%8F %D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D0%BA%D0%B0 300x221

Поделитесь своим мнением Отменить ответ

Популярное на сайте

%D0%9A%D0%B0%D0%BA %D0%BE%D1%82%D0%BB%D0%B8%D1%87%D0%B8%D1%82%D1%8C %D0%A3%D0%97%D0%9E %D0%BE%D1%82 %D0%B4%D0%B8%D1%84%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B0

%D0%90%D0%A1%D0%91 6 %D0%90%D0%A1%D0%912%D0%BB 6 %D0%B4%D0%BE 6 %D0%BA%D0%92

%D0%A0%D0%B5%D0%BC%D0%BE%D0%BD%D1%82 %D0%B2%D0%B0%D1%80%D0%BE%D1%87%D0%BD%D0%BE%D0%B9 %D0%BF%D0%B0%D0%BD%D0%B5%D0%BB%D0%B8

%D0%9F%D1%80%D0%B5%D1%81%D1%81 %D0%BA%D0%BB%D0%B5%D1%89%D0%B8

%D0%A1%D1%85%D0%B5%D0%BC%D0%B0 %D1%81%D0%B1%D0%BE%D1%80%D0%BA%D0%B8 %D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D1%89%D0%B8%D1%82%D0%BA%D0%B0

%D0%91%D0%B5%D1%81%D1%82%D0%BE%D0%BF%D0%BB%D0%B8%D0%B2%D0%BD%D1%8B%D0%B5 %D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B

%D0%A3%D0%BC%D0%BD%D1%8B%D0%B5 gsm %D1%80%D0%BE%D0%B7%D0%B5%D1%82%D0%BA%D0%B8

Опросы

Наш сайт Все-электричество предоставляет вашему вниманию подробную информацию об электрике. Публикация наших материалов может разрешаться только в том случае если вы укажите ссылку на источник с указанием нашего проекта. Перед использованием нашего проекта рекомендуем прочесть пользовательское соглашение. Вся информация на сайте Все-электричество предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет.

Источник

Электромагнитные волны для «чайников». Что излучает телефон?

В этой небольшой серии из трех статей, мы попробуем разобраться с очень важной темой, которая касается каждого современного человека. Ведь все мы буквально погружены в океан электромагнитного излучения, порой даже не осознавая, что это такое и как оно влияет на нас.

Безусловно, в интернете предостаточно статей, которые рассказывают об электромагнитных волнах, их длине и частоте, об ионизирующем излучении и прочих сложных терминах. Но для многих людей всё это остается загадкой — чем-то далеким от той реальности, которую можно потрогать, увидеть или хотя бы осознать.

Например, многие знают, что видимый свет — это поток фотонов или «светящихся шариков», переносящих энергию в пространстве. Но тогда радиоволны или тепло — это тоже фотоны/шарики?

Как вы представляете себе энергию? Может это некий светящийся сгусток материи или небольшая порция электричества, вроде микроскопической молнии? Но ведь брошенный камень тоже обладает энергией, а в нем нет никакого электричества или светящегося вещества.

Что происходит, когда смартфон или фитнес-браслет создает электромагнитную волну, которая затем отдает эту энергию нашему телу? Ведь все эти устройства непрерывно что-то излучают. И куда же девается эта энергия?

Цель этого небольшого цикла статей — ответить на все поставленные выше вопросы. Но ответить не цифрами или сложными терминами, а дать интуитивное понимание, чтобы электромагнитное излучение и энергия показались такими же обыденными вещами, как огонь или вода.

В процессе чтения этих статей вы непосредственно почувствуете, что значит потратить 1 джоуль энергии или сколько это 1 ватт. Ведь именно в ваттах измеряется мощность радиоизлучения от Wi-Fi, смартфонов или Bluetooth-наушников.

Но прежде, чем мы разберемся с энергией, которую излучает различная техника (во второй части), и поймем влияние этой энергии на организм (в третьей части), нужно осознать, что такое излучение вообще.

Именно о природе электромагнитных волн и пойдет речь в первой статье!

Что такое электромагнитное поле? Или о логических противоречиях

Очевидно, электромагнитные поля — это набор электрических и магнитных полей. Но при попытке ответить на вопрос о том, что же такое электромагнитное поле, из чего оно состоит и почему работает так, как работает, мы сталкиваемся с логическим противоречием.

Если вы пытались в этом разобраться, то, скорее всего, тоже каждый раз разочаровывались в ответах, потому что, задавая такие вопросы, вы нарушаете законы логики.

Из чего состоит воздух? Очевидно, из молекул. Почему воздух нагревается? Потому что молекулы находятся в непрерывном движении и если они ускоряются, то при столкновении с нашей кожей ударяются в нее сильнее, передавая часть энергии движения нашим молекулам. И мы чувствуем тепло.

Это простые вопросы и на них есть простые ответы, так как ни воздух, ни молекулы не являются фундаментальными понятиями, а значит, их природу можно объяснить.

Читайте также:  квартирный вопрос входные двери

Фундаментальное понятие — это то, из чего состоит всё остальное, то, что невозможно разложить на составляющие части, невозможно разделить, как мы делим молекулы на атомы, атомы — на электроны и ядра, а ядра — на протоны и нейтроны.

Представьте машинку, собранную из деталек конструктора. Для ребенка одна деталька и будет фундаментальным понятием. Ведь он даже не представляет, что детальку можно «разобрать» на более мелкие «детальки» — атомы.

Так вот, в современной науке, какой бы продвинутой и фантастической она ни казалась нам, электрические и магнитные поля являются фундаментальными понятиями. Поэтому ни одна статья не сможет дать вам тот ответ, на который вы рассчитываете.

Тем не менее, кое-что мы понять можем!

Что такое электрическое поле?

Всё вещество в нашей вселенной в основном состоит из трех частиц: электронов, протонов и нейтронов. Это и есть «неделимые» детальки конструктора. А раз неделимые, значит, элементарные.

Из этих трех частиц только две (электроны и протоны) обладают неким интересным свойством под названием электрический заряд. Например, у частиц есть какая-то масса, «размер» и другие параметры, включая тот самый «заряд».

Если вы при слове «заряд» подумали об электрическом токе, то снова сделали логическую ошибку. Ток — это движение зарядов в пространстве. Соответственно, называя заряд током, мы ходим по кругу: заряд — это ток, а ток — это заряд. Нонсенс.

Дело в том, что электрон и протон не просто так парят в пространстве, они изменяют его! Эти частицы создают вокруг себя некую форму материи, которую мы и назвали электрическим полем.

Его невозможно потрогать, невозможно увидеть, но все частицы, обладающие зарядом, испытывают его влияние на себе.

Электрический заряд — это и есть способность частицы создавать вокруг себя материю под названием «электрическое поле», а также способность реагировать на электрические поля, созданные другими частицами.

Если мы представим протоны и электроны как шарики, то электрическим полем будут линии, выходящие из этих шариков (или входящих в них). Это непростые линии, они могут толкать или притягивать другие частички, обладающие зарядом:

Эти линии никогда не пересекаются. Если поместить рядом два протона, из которых исходят линии (электрическое поле), то линии согнутся и будут пытаться выпрямиться, словно прутья. В результате две частички отлетят друг от друга:

two like charges repel

Но если мы поместим протон, из которого выходят линии, и электрон, в который линии входят, они «склеятся» друг с другом:

opposite charges attract

Когда люди заметили подобное поведение, то решили как-то обозвать два типа таких зарядов. Можно было называть их исходящими и входящими зарядами или липкими и колючими. Но Бенджамин Франклин (тот, что изображен на стодолларовой купюре) назвал их положительными и отрицательными зарядами.

Итак, электрическое поле — это некая таинственная материя, которую создают вокруг себя все частицы, обладающие таким свойством, как электрический заряд.

Конечно, в реальности электрическое поле не состоит из физических линий, но именно так проще всего представлять эту материю. К примеру, вокруг частиц с положительным электрическим зарядом линии направлены от частицы и это направление показывает, в какую сторону будут отталкиваться другие положительные заряды:

how charges repels

Чем ближе к протону — тем больше линий, то есть, выше плотность их размещения и, соответственно, электрическое поле будет более сильным. Чем дальше от протона — тем реже встречаются линии, и тем слабее поле, то есть, оно толкает другие заряды с меньшей силой. Это даже интуитивно понятно, так как один согнутый «прутик» толкнет частичку гораздо слабее, чем сотня таких же натянутых «прутьев», сделанных из неизвестной науке материи.

Важно понимать, что «прутики» не толкают непосредственно частички, они на них вообще никак не влияют. Эти «прутики» взаимодействуют только с другими «прутьями» или линиями электрических полей, созданных другими заряженными частицами.

Поэтому, если у частицы нет заряда (например, у нейтрона), тогда она никак не будет реагировать на электрические поля в пространстве и сама не будет создавать вокруг себя этой материи.

Из какого именно вещества состоит электрическое поле и как оно выглядит — это бессмысленные вопросы. Поле не может состоять из вещества по определению. Ведь наша вселенная состоит из материи, которая в свою очередь делится на вещество и поле:

matter and field

Поэтому не нужно думать об электрическом поле, как о каком-то веществе, вроде электронов, атомов или жидкости. Это отдельная форма существования материи. Если в веществе может быть пустота (вакуум), то в поле не может быть пустот, так как поле не состоит из отдельных частиц.

Представьте, что всё пространство во вселенной, включая вакуум, заполнено какой-то неизвестно науке средой. Это не электрическое поле, а просто что-то, что заполняет всё вокруг. В таком случае элементарная частица, обладающая электрическим зарядом, будет деформировать эту среду. И вот эта деформация/изменение пространства и есть электрическое поле.

Что такое магнитное поле?

Раз элементарные частицы, обладающие электрическим зарядом, создают вокруг себя электрическое поле, то, должно быть, существуют элементарные частицы, обладающие магнитным зарядом и вот они-то и создают вокруг себя магнитное поле?

Хотя в этом и есть логика, но это не так. Не существует такого свойства частиц, как «магнитный заряд» и ни одна частица не обладает магнитным полем. Откуда же оно берется?

Прежде всего, магнитное поле — это еще один реально существующий вид материи, который может появляться из «ниоткуда» и исчезать в «никуда». Это примерно такое же изменение пространства, как и электрическое поле, но с небольшими отличиями.

Возьмем, к примеру, электрон. Это частица, имеющая электрический заряд. А раз так, она всегда создает вокруг себя электрическое поле и больше ничего. Но стоит электрону сдвинуться с места, то есть, начать движение и вокруг этого электрона, помимо постоянного электрического поля, тут же начнет появляться магнитное поле:

Как только электрон остановится, магнитное поле исчезнет. В отличие от электрического поля, магнитное поле не исходит от частицы, а окружает ее. Также линии магнитного поля замкнуты, а не направлены во все стороны (действие их силы показано стрелкой на картинке выше).

Когда электрон или другая заряженная частица пролетает, магнитное поле не исчезает мгновенно, а как бы тянется небольшим шлейфом впереди и позади электрона, причем поле тем сильнее, чем ближе оно к частице:

electron move with magnetic field

Если электрическое поле с силой действует на частицы с электрическим зарядом, то магнитное поле действует на эти же частицы, если они находятся в движении.

К примеру, мы можем взять два провода и пустить по ним ток, чтобы внутри по проводам поползли элементарные заряженные частицы (электроны). Как только они начнут свое движение, вокруг проводов появятся магнитные поля. То есть, два провода в буквальном смысле слова станут двумя магнитами.

Если электроны в двух проводах будут ползти в одну сторону, магнитные поля будут притягивать друг друга, словно вы прикладываете два магнита разными полюсами. Если же ток в двух проводах будет течь в разные стороны, «провода-магниты» будут отталкиваться:

wires turn to magnets

Заметьте, что электрические поля электронов не имеют никакого отношения к этому отталкиванию или притяжению. Это проявляются магнитные поля.

Что заставляет электроны ползти по проводам? Верно — электрическое поле! Так как на одном конце провода собралось очень много отрицательно заряженных частичек, а на втором — положительно заряженных, то именно электрическое поле и притягивает отрицательные заряды (электроны) к положительным, заставляя их ползти по проводу:

Это и есть электромагнитные поля.

Но причем здесь излучение? Ведь электрическое и магнитное поле существуют только вокруг частичек, не так ли?

Что такое электромагнитное излучение? Или о том, как работает телефон

Снова наша логика подсказывает очень простой ответ. Если электромагнитное поле существует только вокруг элементарных частиц с зарядом (электронов и протонов), то электромагнитное излучение — это, наверное, полет электронов или протонов.

Наверное, во время звонка смартфон выбрасывает в пространство припасенные в аккумуляторе электроны, которые затем разлетаются во все стороны и создают при полете вокруг себя электромагнитные поля. Верно?

Может это звучит и логично, но в корне ошибочно. Всё куда интереснее и сложнее.

Дело в том, что наша вселенная устроена так, что изменяющееся электрическое поле порождает изменяющееся магнитное поле, а изменяющееся магнитное поле порождает изменяющееся электрическое поле.

Чтобы понять этот набор слов, давайте рассмотрим простой пример.

Вернемся к проводу, на одном конце которого собралось много положительно заряженных частиц, а на другом — с отрицательным зарядом. Так как линии электрического поля всегда выходят из положительных зарядов и входят в отрицательные, то наше электрическое поле упрощенно выглядит так:

electric field in the wire

Естественно, такое поле оказывает влияние на все электроны в проводе и заставляет их двигаться по направлению к положительно заряженным частицам. Но когда все отрицательные частицы переходят вниз, то теперь внизу собрался отрицательный заряд, а вверху — положительный. И теперь электрическое поле изменило свое направление и выглядит так:

alternating current

Это и есть изменяющееся электрическое поле. Оно постоянно меняет свое направление (направление силовых линий) и силу.

Ну а что с магнитным полем?

Когда электрическое поле заставляет двигаться заряженные частички, вокруг этого движения возникает магнитное поле. Причем, когда все электроны находятся на одном из концов провода, магнитное поле исчезает, ведь движение электронов останавливается. А когда электроны начинают двигаться в противоположную сторону, магнитное поле снова увеличивается до максимума:

magnetic field in changing electric field

Так как направление движения электронов каждый раз меняется, то меняется не только сила магнитного поля, связанная с движением электронов, но и направление его линий:

Читайте также:  виды саун и их польза

changing magnetic field

Это и есть изменяющееся во времени магнитное поле!

Получается, у нас есть изменяющееся электрическое поле, которое порождает изменяющееся магнитное поле. А как мы помним, изменяющееся магнитное поле снова порождает изменяющееся электрическое поле. И тут происходит настоящая цепная реакция, словно падение костяшек домино:

electromagnetic radiation

Даже если в этот момент убрать провод и любые частицы, это уже не остановит волну порождений одного поля другим. Такая волна будет нестись в пространстве со скоростью света, по пути влияя на все остальные заряженные частицы.

К слову, именно это изменение электрического поля и показывают на графиках в виде волн:

electric field graph

Когда электроны начинают движение и собираются на одном конце провода, электрическое поле на графике направляется вверх и его сила увеличивается. Затем электроны начинают двигаться в обратном направлении и сила электрического поля на графике начинает снижаться до тех пор, пока электроны не соберутся на противоположной стороне провода.

Теперь график снова показывает максимальную силу электрического поля, но уже направленную в другую сторону:

real current and graph

Иногда график рисуется более корректно, так как к нему добавляется еще магнитное поле, которое колеблется перпендикулярно относительно электрического поля:

electromagnetic wave

Итак, мы видим, что электромагнитная волна не связана с полетом электронов или протонов. При помощи электронов мы лишь создаем в одной точке пространства изменяющееся электрическое поле и оно порождает цепную реакцию под названием электромагнитное излучение.

Никакое вещество не переносится в пространстве, идет просто возмущение/колебание пространства или условной среды, заполняющей всё пространство.

Именно это делают смартфоны, Bluetooth-наушники или фитнес-браслеты. Внутри этих устройств есть антенны — небольшие кусочки провода, по которым электроны бегают то в одну сторону, то в другую. Из-за этого создается переменное электрическое поле, которое создает переменное магнитное поле и запускается уже рассмотренная нами реакция.

А теперь представьте, что такая волна доходит до другого устройства. Кусок провода (антенна) внутри него начинает испытывать воздействие электрического поля. Вначале оно имеет максимальную силу и направлено вниз. Естественно, все электроны испытывают на себе это влияние и под действием силы начинают двигаться в одну сторону.

Затем электрическое поле угасает и движение останавливается, после чего разворачивается в другую сторону и все электроны снова начинают движение в противоположную сторону. А движение электронов — это ток. В итоге, в проводе возникает электричество или сигнал!

real current and graph

Для провода и электронов нет разницы, подключили ли мы батарейку (источник электрического поля) или это электрическое поле пришло в виде волны, главное, что все электроны начинают испытывать на себе движущую силу.

Именно так мы и можем передавать энергию на расстоянии, просто посылая колебания электрического поля.

У электромагнитной волны есть несколько свойств. Например, скорость распространения волны составляет 300 тыс. километров в секунду (в вакууме). Длина волны — это расстояние между ее последовательными пиками:

em wavelength

То есть, это время, за которое электрическое поле меняет свое направление.

Также у волны есть частота, которая говорит нам о том, как часто сменяется направление движения электронов в проводе (или направление электрического поля).

Если направление электрического поля меняется 50 раз в секунду, значит, мы имеем электромагнитную волну с частотой 50 Гц, а если направление тока меняется 2.4 миллиарда раз в секунду, электромагнитная волна имеет частоту 2.4 ГГц. Именно на такой частоте работает Bluetooth, Wi-Fi и микроволновка.

И именно от частоты зависит энергия волны. Одни волны могут буквально разрушать всё на своем пути, включая ДНК человека. Другие волны могут растягивать молекулы, а третьи — поворачивать их внутри нашего тела.

Но что такое энергия? Почему энергия зависит от длины волны (от того расстояния, которое нужно преодолеть электронам в антенне)? Откуда берется эта энергия и куда девается? Обо всем этом мы поговорим во второй части.

Алексей, глав. ред. Deep-Review

P.S. Не забудьте подписаться в Telegram на первый научно-популярный сайт о мобильных технологиях — Deep-Review, чтобы не пропустить очень интересные материалы, которые мы сейчас готовим!

Как бы вы оценили эту статью?

Нажмите на звездочку для оценки

Внизу страницы есть комментарии.

Напишите свое мнение там, чтобы его увидели все читатели!

Если Вы хотите только поставить оценку, укажите, что именно не так?

what is tetracell and quad bayer filter

Камеры смартфонов с матрицами Sony и Samsung. Что такое Tetracell и Quad Bayer?

depth sensor smartphone

Что такое сенсор глубины на смартфоне? Или почему портретный режим превратился в инструмент для обмана

5g for dummies

5G для «чайников». Что такое 5G, как это работает и зачем нужно?

led flickering

Осторожно, AMOLED-экран! Всё, что нужно знать о вреде мерцания и ШИМ

galaxy watch 4 bioimpedance analysis

Биоимпедансный анализ для «чайников». Как смарт-часы и весы научились определять состав тела?

sleep traking on fitness trackers and smart watch

Сон и фитнес-браслеты. Руководство для чайников

fingerprint sensors

Сканер отпечатка пальца на смартфоне. Как работает и что лучше — емкостный, оптический или ультразвуковой?

energy watt matter

Что такое энергия? Или таинственная материя, которую создают гаджеты

Но тогда радиоволны или тепло — это тоже фотоны/шарики?

Не увидел ответа на этот вопрос, но вообще, да — все электромагнитные волны распространяются посредством фотонов. Электроны антенн радиопередатчиков излучают фотоны определённой энергии, а электроны антенн радиоприёмников поглощают эти фотоны и начинают из-за этого движение, которое в итоге и приводит к возникновению тока.

Если бы человеческий глаз умел видеть в радиодиапазоне, то радиовышки мы бы воспринимали как очень яркие прожекторы, которые видно за десятки километров.

Хорошая статья! А где можно прочитать вторую часть?

Кажется, автор начал слишком издалека. Для большинства пользователей смартфонов это не нужно. А те, кто не прогуливал уроки физики в школе и так это знают.

К сожалению, не могу с Вами согласиться. Буквально на днях увидел в интернете забавный вопрос, корни которого растут как раз из того, что школьные уроки физики были неинтересны, а статьи в интернете начинаются не слишком издалека.

Так вот, человека интересовало, можно ли вывести из организма электромагнитное излучение, полученное от гаджетов…

В понимании этого человека, электромагнитное излучение является неким веществом, которое попадает в организм и находится там, пока его оттуда не выведешь. Вот для таких людей мы и начинаем обычно издалека.

Разумеется, уровень образования у каждого разный и то, что Вам кажется банальным и очевидным, для других становится настоящим откровением.

Спасибо огромное за статью. Физику изучаю в течении всей жизни и каждый раз пытаюсь погрузиться чуть глубже в понимание процессов, но все равно всегда остаются непонятные мне вещи.
Что подразумевается под концами проводов, ведь для движения частиц система должна быть замкнута?
В институте мне говорили, что при отключении провода от источника питания частицы никуда не деваются,а просто останавливают движение,
а из статьи можно сделать вывод, что они пропадают из провода, оказываясь на его концах

Что подразумевается под концами проводов, ведь для движения частиц система должна быть замкнута?

Нет, это совсем не обязательно. Для движения частиц нужна только сила, которая будет их толкать, а замкнут ли провод или разомкнут — не суть важно. Главное — где-то взять электрическое поле.

Для этого можно воспользоваться батарейкой — специальным устройством с электрическим полем. У батарейки на одном конце положительный заряд, а на другом — отрицательный. Если соединить эти два конца проводом, то все электроны ощутят на себе силу электрического поля и поплывут от отрицательного конца к положительному и будет ток.

Но в случае с электромагнитной волной, сам провод непосредственно «погружается» в электрическое поле. Когда волна «смотрит» вверх, все электроны внутри провода ощущают на себе силу, которая толкает их вниз. Затем волна проходит, электрическое поле исчезает и электроны останавливаются.

при отключении провода от источника питания частицы никуда не деваются, а просто останавливают движение

Безусловно, так и есть. Если быть более точным, то электроны никогда не останавливаются, они находятся в непрерывном движении внутри провода, так как там есть локальные электрические поля, создаваемые атомами и другими электронами. Просто электроны движутся хаотично во всех направлениях. А ток — это движение всех электронов в одном направлении.

из статьи можно сделать вывод, что они пропадают из провода, оказываясь на его концах

Смотрите, когда в определенный момент времени электрическое поле достигает максимума, электроны оказываются на одном из концов провода (того провода, который оказался «погруженным» в электрическое поле и который испытывает на себе его силу).

Это совершенно неестественное поведение для электронов. Они не могут собираться вместе, так как все они — отрицательно заряженные частицы. А одноименные заряды всегда отталкиваются. И именно электрическое поле силой удерживает их на одном из концов провода.

Но как только электрическое поле начнет ослабевать (а это волна, которая приходит и уходит), его силы будет уже недостаточно для того, чтобы удерживать все электроны в одном месте. Поэтому какие-то электроны начнут отлетать от конца провода. И чем слабее будет становиться поле, тем больше электронов будет отталкиваться друг от друга и занимать более свободное пространство внутри провода, где нет переизбытка одноименных зарядов.

К тому моменту, когда электрическое поле полностью исчезнет, все электроны уже будут равномерно распределены по проводу.

Именно это я пытался наглядно показать на рисунке, где схематически отображается электрическая волна, а под ней — то, что происходит в проводе. Обратите внимание, что когда волна спадает до нуля (на горизонтальной линии), электроны равномерно распределены по проводу.

Источник

Оцените статью
Мой дом
Adblock
detector