электрическое поле между заряженными разноименно бесконечно протяженными плоскостями однородно

Разноименно заряженных бесконечно протяженных плоскостей

Пусть две параллельные бесконечно протяженные плоскости заряжены равномерно с поверхностной плотностью заряда s =ï+ sï = ï- sï.

image069Рис. 4

Между плоскостями линии напряженности направлены в одну сторону, следовательно, с учетом (13) имеем

image071(14)

Таким образом, электрическое поле между заряженными разноименно бесконечно протяженными плоскостями однородно, за исключением краевых эффектов. Если размеры плоскостей (пластин) много больше расстояния между ними, то полученный результат остается справедливым и для пластин конечных размеров (плоский конденсатор).

3.3. Поле равномерно заряженной сферической поверхности

image073Рис. 5

Рассмотрим три случая:

Поток вектора image004, т. е. Фе = Е Sr (Е = Еn, image045­­ image006),

image075Рис. 6

Согласно теореме Гаусса поток вектора image004

image076,

или image078

где image080;

image082Рис. 7

image084

image086. (15)

Если в формуле (15) поверхностную плотность заряда s, заменить на заряд q,

т. е. image088,

то image090.

Вывод: на любом расстоянии r от заряженной сферы напряженность электрического поля можно найти по формуле напряженности точечного заряда, если весь заряд сферы сосредоточить в ее центре (т. 0);

в) r = R. В этом случае нужно в формуле (15) вместо r запишем R, тогда

image092

image094.

График изменения напряженности электрического поля заряженной сферической поверхности от расстояния r приведен на рис. 7.

Дата добавления: 2016-02-09 ; просмотров: 478 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Электрическое поле между заряженными разноименно бесконечно протяженными плоскостями однородно

tr c w

Вычисление электрических полей с помощью теоремы Остроградского –Гаусса back go

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

071

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность 005во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность 005будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

072
Рис. 2.11 Рис. 2.12

Тогда 073

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

076

Внутри поверхности заключен заряд 077. Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости 080

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей 081.

Тогда внутри плоскостей

Вне плоскостей напряженность поля 083

085 084

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. 089, то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью 091, где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

092

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров 093для боковой поверхности 094т.е. зависит от расстояния r.

Следовательно, поток вектора 005через рассматриваемую поверхность, равен 095

При 096на поверхности будет заряд 097По теореме Остроградского-Гаусса 098, отсюда

Если 100 101, т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

102

Если уменьшать радиус цилиндра R (при 103), то можно вблизи поверхности получить поле с очень большой напряженностью и, при 104, получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

106

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

107

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, 005– в любой точке проходит через центр шара. 108,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если 096то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

откуда поле вне сферы:

Внутри сферы, при 100поле будет равно нулю, т.к. там нет зарядов: 111

113 112

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при 100сферическая поверхность будет содержать в себе заряд, равный

115

где ρ – объемная плотность заряда, равная: 116; 117– объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара 120

Источник

Учебники

Журнал «Квант»

Общие

Теорема Остроградского—Гаусса и ее применение для расчета электростатических полей

Img T 66 002

Пусть поле создается точечным электрическим зарядом q. Проведем замкнутую сферическую поверхность площадью S (рис. 2), окружающую этот заряд, центр которой совпадает с точкой нахождения заряда. Вычислим поток вектора напряженности через эту поверхность. За положительное направление нормали выберем направление внешней нормали \(

\vec n\). В этом случае во всех точках сферической поверхности E = const и cos α = 1.

Модуль напряженности поля на расстоянии R от заряда \(

Следовательно, поток вектора напряженности через сферическую поверхность

Полученный результат будет справедлив и для поверхности произвольной формы, а также при любом расположении заряда внутри этой поверхности. Действительно, если окружить сферу произвольной замкнутой поверхностью (рис. 2, а — поверхность изображена штрихами), то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 2, б), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в поверхность, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линии, входящей в поверхность. Если же внутри поверхности площадью S1 (см. рис. 2) заряды отсутствуют, то поток напряженности через эту поверхность равен нулю (NS = 0).

Img T 66 003

Если рассматриваемая поверхность охватывает не один, а несколько электрических зарядов, то под q следует понимать алгебраическую сумму этих зарядов (рис. 3) и

Эта формула выражает теорему Остроградского—Гаусса: поток вектора напряженности через замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на произведение электрической постоянной и диэлектрической проницаемости среды.

Применим эту теорему для расчета электростатических полей некоторых проводников.

Равномерно заряженная бесконечная плоскость

Пусть σ — поверхностная плотность заряда на плоскости (рис. 4).

Img T 66 004

В качестве поверхности площадью S выберем цилиндрическую поверхность, образующая которой перпендикулярна плоскости. Основания этого цилиндра расположены перпендикулярно линиям напряженности по обе стороны от плоскости. Так как образующие цилиндра параллельны линиям напряженности (α = 90°, cos α = 0), то поток через боковую поверхность цилиндра отсутствует, и полный поток через поверхность цилиндра равен сумме потоков через два основания: N = 2ES. Внутри цилиндра заключен заряд q = σS, поэтому, согласно теореме Остроградского-Гаусса, \(

2ES = \frac<\sigma S><\varepsilon_0 \varepsilon>\), где ε = 1 (для вакуума), откуда следует, что напряженность поля равномерно заряженной бесконечной плоскости

Бесконечная равномерно заряженная нить

Пусть τ — линейная плотность заряда нити. Выделим участок нити длиной Δl и окружим его цилиндрической поверхностью, расположенной так, что ось цилиндра совпадает с нитью (рис. 5).

Img T 66 005

Линии напряженности электростатического поля, создаваемого нитью в сечении, перпендикулярном самой нити, направлены перпендикулярно боковой поверхности цилиндра, поэтому поток напряженности сквозь боковую поверхность \(

N = E \cdot 2 \pi R \Delta l\), где R — радиус цилиндра. Через оба основания цилиндра поток напряженности равен нулю (α = 90°, cos α = 0). Тогда полный поток напряженности через выделенный цилиндр

Заряд, находящийся внутри этого цилиндра, q = τ · Δl.

Согласно теореме Остроградского—Гаусса, можно записать \(

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 220-222.

Источник

Читайте также:  что можно сделать со стенами в ванной кроме плитки
Оцените статью
Мой дом
Adblock
detector