электрическое поле может быть изображено с помощью

Напряженность электрического поля и его графическое изображение

На единичный положительный заряд, помещенный в любую точку электрического поля, будет действовать некоторая сила.

Определение: Сила, действующая на единичный неподвижный положительный заряд в данной точке поля, называется напряженностью электрического поля.

Измеряется напряженность поля в вольтах на метр (в/м).

Если в данной точке поля находится заряд q и поле действует на него с силой F, то напряженность поля Е можно определить по формуле

formula napryazhennosti ehlektricheskogo polya

Если в данной точке поля находится единичный заряд (т. е. q=1), то E = F. Это соответствует данному выше определению напряженности электрического поля.

Пример. В электрическом поле находится заряд q = 0,004 кулона. На заряд действует сила F = 4 ньютонам. Определить напряженность электрического поля.

Решение.

%D0%9F%D1%80%D0%B8%D0%B8%D0%B5%D1%80 %D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0 %D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D0%B8 %D0%BF%D0%BE%D0%BB%D1%8F

Кулон — заряд, переносимый через поперечное сечение проводника в одну секунду при неизменяющейся силе тока, равной одному амперу.

Следует подчеркнуть разницу между понятиями «напряженность электрического поля» и «напряжение». Напряженность характеризует поле в данной точке через величину силы, действующей на единичный положительный заряд, находящийся в этой точке. Напряжение — это разность потенциалов между двумя точками электрического поля, или работа, совершаемая силами поля при переносе единичного положительного заряда из одной точки поля в другую.

ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Мы уже знаем, что вокруг электрического заряда существует электрическое поле, проявляющееся, в частности, в том, что на пробный заряд, внесенный в это поле, действует механическая сила. Кроме того, нужно обратить внимание и еще на одно очень важное обстоятельство: пробный заряд под действием электрического поля всегда перемещается в определенном направлении. Например, если поле создано положительно заряженным шаром, то пробный положительный заряд отталкивается от шара и перемещается в направлении радиуса шара. Если бы шар был заряжен отрицательно, то пробный положительный заряд притягивался бы к шару, но опять перемещался бы в направлении радиуса.

В поле, созданном несколькими зарядами, перемещение пробного заряда происходило бы по более сложной траектории.

Перемещение пробного заряда q в электрическом поле происходит под действием силы поля (F). В электрическом поле можно провести линии, касательные к которым в каждой точке совпадают с направлением силы F, действующей па пробный заряд. Такие линии называются электрическими силовыми линиями (рис. 1).

ehlektricheskaya silovaya liniya

Рисунок 1. Электрическая силовая линия.

Электрические силовые линии позволяют характеризовать электрическое поле. Ими пользуются при объяснении многих электрических явлений.

Следует твердо помнить об условности понятия «электрическая силовая линия». Это не что иное, как графическое изображение реально существующего электрического поля. Пользуясь таким условным изображением, можно наглядно и просто охарактеризовать направление движения зарядов в поле, уяснить характер взаимодействия заряженных тел и т. д.

В дальнейшем мы будем неоднократно использовать термин «электрические силовые линии», не оговаривая каждый раз его условность.

Для ряда простых случаев графическое построение электрического поля не вызывает затруднений. Нужно только помнить следующее:

— силовые линии направлены от положительных зарядов к отрицательным (направление движения пробного положительного заряда);

— силовые линии начинаются на положительном заряде и кончаются на отрицательном;

— силовые линии должны быть направлены всегда перпендикулярно поверхности заряженного тела.

На рис. 2 и 3 показаны примеры графического изображения электрических полей. Направление силовых линий обозначается стрелками.

pole polozhitelnogo zaryadapole otricatelnogo zaryada

Рисунок 2. Силовые линии электрического поля, образованные точечным зарядам: слева-положительным, справа-отрицательным.

pole dvuh raznoimennyh zaryadovpole dvuh odnoimennyh zaryadov

Рисунок 3. Силовые линии электрического поля, образованные двумя зарядам: слева-двумя разноименными, справа-двумя одноименными.

Следует запомнить, что положительный заряд, внесенный в электрическое поле, будет перемещаться от точек с более высоким потенциалом к точкам с более низким потенциалом. Наоборот, отрицательный заряд, внесенный в электрическое поле, будет перемещаться от точек с более низким потенциалом к точкам с более высоким потенциалом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Искать

Электрическое поле

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2RpcG9sZV9maWVsZF82MDAuZ2lmJnc9MjAwJmg9MjAwJnE9OTA=

Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электромагнитного поля.

Что такое электрическое поле

После того как тело получило заряд, оно способно действовать на другие заряженные тела: притягивать тела с противоположным зарядом и отталкивать их, если они имеют такой же заряд.

Каким же образом происходит такое взаимодействие?

Зарядим металлический шарик, закреплённый на металлической подставке. Точно такой же по знаку заряд сообщим другому шарику из пенопласта, подвешенному на нити. Назовём его пробным. Перемещая его на разные расстояния, увидим, что нить с шариком отклоняется в любой точке пространства. Этот способ исследования называется методом пробного заряда.

Почему отклоняется пробный шарик?

Характеризуется электрическое поле физической величиной, которую называют напряжённостью электрического поля. Это количественная характеристика, векторная величина. Она равна отношению силы, действующей на точечный заряд в данной точке поля, к величине этого заряда:

Читайте также:  этот символ франции был придуман в вене поле чудес

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2FkMS5qcGcmdz0yMDAmaD0yMDAmcT05MA==

где Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2FkMi5qcGcmdz0yMDAmaD0yMDAmcT05MA==— напряжённость электрического поля;

Точечным называют заряженное тело, размеры которого настолько малы, что ими можно пренебречь по сравнению с расстоянием, на котором рассматривается воздействие этого заряда. Электрические поля, создаваемые такими зарядами, называют кулоновскими полями.

Силы, действующие на пробный заряд в разных точках электрического поля, отличаются по величине и направлению. Соответственно, различны и напряжённости в этих точках поля. Такое поле называют неоднородным.

Если модуль и направление напряжённости электрического поля одинаковы во всех его точках, то такое поле называется однородным.

Однородное поле создаётся в центре между двумя параллельными заряженными пластинами.

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2ltNi5qcGcmdz0yMDAmaD0yMDAmcT05MA==

Электростатическое поле

Электрическое поле, созданное неподвижным и не меняющимся во времени зарядом, называется электростатическим полем.

Если электрическое поле образовано несколькими зарядами, то напряжённость в данной точке пространства равна сумме напряжённостей электрических полей, создаваемых в этой точке каждым зарядом в отдельности.

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2FkNC5qcGcmdz0yMDAmaD0yMDAmcT05MA==

Графическое изображение электрического поля

Графически электрическое поле изображают с помощью силовых линий.

Силовая линия – это такая линия, касательная к которой в каждой её точке совпадает с направлением вектора напряжённости в этой точке.

Начинаются силовые линии на положительных зарядах или на бесконечности и заканчиваются на отрицательных, либо уходят в бесконечность. Они никогда не пересекаются и не касаются друг друга.

Силовые линии указывают направление действия силы, которая действует на положительно заряженную частицу со стороны электрического поля.

В общем эти линии имеют форму кривых. Но они могут быть и прямыми линиями в случае, если описывается поле одиночного точечного заряда.

Силовые линии положительного точечного заряда уходят в бесконечность.

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyLzE3MS5qcGcmdz0yMDAmaD0yMDAmcT05MA==

Силовые линии отрицательного точечного заряда начинаются в бесконечности.

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyLzE3Mi5qcGcmdz0yMDAmaD0yMDAmcT05MA==

Совокупность двух точечных зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга, называется электрическим диполем. В целом электрический диполь нейтрален.

Вот так выглядят силовые линии электрического диполя.

А вот так располагаются силовые линии двух одинаковых по знаку электрических зарядов.

Электростатический потенциал

Другой величиной, характеризующей электростатическое поле, является электростатический потенциал (точечный потенциал). Это скалярная величина, равная отношению потенциальной энергии взаимодействия электрического заряда с полем к величине этого заряда. Электростатический потенциал – это энергетическая характеристика электрического поля:

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2FkNS5qcGcmdz0yMDAmaD0yMDAmcT05MA==

В вакууме электростатический потенциал точечного заряда определяют по формуле:

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2FkNy5qcGcmdz0yMDAmaD0yMDAmcT05MA==

Напряжённость электрического поля связана с его потенциалом следующим отношением:

Li4vLi4vLi4vLi4vaW1hZ2VzL2lza3Vzc3R2by9maXppa2EyL2FkOC5qcGcmdz0yMDAmaD0yMDAmcT05MA==

Так как электрическое поле является потенциальным полем, то работа, совершаемая при перемещении заряда q из точки 1 в точку 2, равна:

Электрическое поле, созданное электрическими зарядами, называют потенциальным. Его силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Электрическое поле, возникшее за счёт электромагнитной индукции, называется вихревым. Силовые линии такого поля замкнуты. Существуют комбинации потенциальных и вихревых полей.

Электрическое поле является одной из составляющих электромагнитного поля. Оно возникает не только вокруг электрических зарядов, но и при изменении магнитного поля.

В свою очередь, магнитное поле появляется при изменении электрического поля или создаётся током заряженных частиц.

Источник

Графическое изображение электрических полей

Электрическое поле графически изображается с помощью электрических силовых линий. Электрическими силовыми линиями называют линии, показывающие направление действия сил электрического поля на положительный заряд, помещенный в это электрическое поле.

Направление электрических силовых линий в каждой точке совпадает с касательной, создаваемой направлением вектора напряженности в этой точке. Чем больше напряженность электрического поля, тем больше плотность электрических силовых линий.

Электрическое поле может быть однородным и неоднородным. Однородным электрическим полем называется такое, во всех точках которого электрические силовые линии имеют одинаковую плотность и одно направление. На рисунке 1 показано однородное электрическое поле в средней части между двумя параллельными плоскостями, имеющими разноименные заряды.

odnorodnoe elektro poleРисунок 1

Если плотность электрических линий неодинакова в различных точках электрического поля, то такое поле называется неоднородным. На рисунке 2 показано неоднородное электрическое поле созданное двумя одноименными зарядами. Электрические силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных или уходят в бесконечность.

img16Рисунок 2

Электрические силовые линии не пересекаются. Это очевидно из того, что вектор напряженности электрического поля в любой точке поля может иметь только одно направление. Нельзя думать, что электрические силовые линии существуют в действительности. Они являются только наглядным способом изучения электрических полей и показывают действительное направление вектора напряженности в данной точке электрического поля.

Распределение электрического поля в пространстве может быть охарактеризовано не только электрическими силовыми линиями, но и поверхностями разного потенциала—эквипотенциальными поверхностями. Вокруг заряженного шара (рисунок 3) точки с равным потенциалом находятся на сферической поверхности, окружающей заряженный шар.

zaryazheni sharРисунок 3

На рисунке 4 сплошными линиями показаны эквипотенциальные поверхности электрического поля, созданного двумя разноименными зарядами. Так как в любых точках одной и той же эквипотенциальной поверхности потенциалы равны, то силы поля не совершают работу по перемещению электрического заряда по эквипотенциальной поверхности, поэтому векторы напряженности электрического поля направлены перпендикулярно к этой поверхности, то есть электрические силовые линии в точке пересечения с эквипотенциальными поверхностями перпендикулярны к ним.

Читайте также:  снег на лунном поле заметал следы аккорды

20180423 185748Рисунок 4

Как установлено опытом, напряженность электрического поля нескольких зарядов в данной точке равно геометрической сумме напряженностей электрических полей зарядов в этой точке, создаваемых всеми отдельными зарядами независимо друг от друга E=E1++E2+…+En. Если электрическое поле создано несколькими зарядами, то для определения в данной точке поля результирующей напряженности, созданной всеми зарядами, применяют принцип наложения, который также называется принципом суперпозиции.

20180423 023228Рисунок 5

Принцип наложения заключается в том, что сначала определяют напряженность E1, создаваемую в точке М (рисунок 5) только одним зарядом Q1, предполагая, что второго заряда Q2 в электрическом поле нет, а затем определяют напряженность E2, создаваемую только зарядом Q2 в той же точке М, предполагая, что первого заряда Q1 в электрическом поле нет.

Напряженность электрического поля, созданного зарядами Q1 и Q2, равна сумме Е=Е12.

Источник

Электрическое поле

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика — напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

image001 28

Напряженность электрического поля – векторная физическая величина. Направление вектора image002 32в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином – электрическое поле

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

image003 33

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции.

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю

image004 31

Это поле называется кулоновским. В кулоновском поле направление вектора image002 32зависит от знака заряда Q: если Q > 0, то вектор image002 32направлен по радиусу от заряда, если Q 0 вектор image002 32параллелен image007 33а при Q –30 Кл · м.

image015 21

Дипольный момент молекулы воды

Во многих задачах электростатики требуется определить электрическое поле image002 32по заданному распределению зарядов. Пусть, например, нужно найти электрическое поле длинной однородно заряженной нити (рис. 1.2.5) на расстоянии R от нее.

image016 18

Электрическое поле заряженной нити

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δx нити, с зарядом τΔx, где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей image017 19Результирующее поле оказывается равным

image018 17

Вектор image002 32везде направлен по радиусу image019 14Это следует из симметрии задачи. Уже этот простой пример показывает, что прямой путь определения поля по заданному распределению зарядов приводит к громоздким математическим выкладкам. В ряде случаев можно значительно упростить расчеты, если воспользоваться теоремой Гаусса, которая выражает фундаментальное свойство электрического поля.

Источник

Напряженность электрического поля

613e1e2484d3c242686351

Что такое электрическое поле

Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.

Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.

Читайте также:  вимос межкомнатные двери гатчина

613efc510e72f863009027

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

F = q × E

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые перекрестно взаимодействуют и образуют общее поле. Чему равна напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав напряжения, создаваемые каждым зарядом в отдельности в той же точке (с учетом вектора). Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.

613efcb30f627303973267

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: 613e20fbede36924992526где q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

613e216d0e246779855958

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

613e21e4e1c60298189249

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

613efd0171f1d012199642

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Источник

Оцените статью
Мой дом
Adblock
detector