электрическое поле напряженность электрического поля принцип суперпозиции полей

Напряженность электрического поля

613e1e2484d3c242686351

Что такое электрическое поле

Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.

Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.

613efc510e72f863009027

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

F = q × E

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые перекрестно взаимодействуют и образуют общее поле. Чему равна напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав напряжения, создаваемые каждым зарядом в отдельности в той же точке (с учетом вектора). Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.

Читайте также:  барбекю зоны для дачи фото

613efcb30f627303973267

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: 613e20fbede36924992526где q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

613e216d0e246779855958

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

613e21e4e1c60298189249

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

613efd0171f1d012199642

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Источник

Электрическое поле напряженность электрического поля принцип суперпозиции полей

image010

Напряжённость электрического поля, как следует из (35.1), является вектором, направление которого совпадает с направлением силы, действующей в данной точке поля на положительный заряд. Из закона Кулона (34.1) следует, что модуль напряжённости E поля точечного заряда q зависит от расстояния r до него следующим образом:

image012

Векторы напряжённости в различных точках электрического поля положительного и отрицательного зарядов показаны на рис. 35а.

image014

Различные тела можно наэлектризовать по-разному: передать им положительный или отрицательный заряд, сделать его большим или малым. После этого тела будут по-разному действовать на другие тела: отталкивать или притягивать их, делать это сильнее или слабее. Но как одно тело «узнаёт» заряд другого (например, чтобы «знать»: притягивать его или отталкивать)? Для ответа на этот вопрос рассмотрим понятие «электрическое поле».

p 08e 1

Наэлектризуем одноимённо металлический шар на пластмассовой подставке и лёгкий пробковый или пенопластовый шарик на нити (назовём его пробным шариком). Будем переносить его в различные точки пространства вокруг большого шара (см. рисунок). Мы заметим, что в каждой точке пространства вокруг наэлектризованного тела обнаруживается сила, действующая на пробный шарик.

О том, что существует сила, мы судим по отклонению нити шарика от вертикали. По мере удаления от заряженного шара пробный шарик отклоняется всё слабее, следовательно, действующая на него сила становится всё меньше (сравните положения а, б, в).

p 08e 2

Для следующего опыта используем магнит и стальной шарик, который положим на горизонтальную поверхность стола. Приблизим магнит к шарику сверху, и он незамедлительно покатится по столу вслед за магнитом. Следовательно, в каждой точке пространства вокруг намагниченного тела есть сила, действующая на стальной шарик.

Итак, в каждой точке пространства вокруг наэлектризованных или намагниченных тел существует так называемое силовое поле, способное воздействовать на другие тела. Заметим, что действие силы тяжести также обнаруживается во всех точках пространства вокруг Земли. Поэтому по аналогии говорят, что в пространстве вокруг планет также существует силовое поле; его называют гравитационным полем.

Обобщаем: гравитационное, магнитное и электрическое поле являются разновидностями силовых полей. На примере электрического поля рассмотрим один из методов изучения полей – метод силовых линий.

Проведём опыт. Возьмём два металлических шара на пластмассовых подставках, а также иглу, тоже укреплённую на подставке. Расположим шары на расстоянии 40–50 см друг от друга, а между ними – подставку с иглой. Уравновесим на ней сухую деревянную щепку.

p 08e 3

Если зарядить шары разноимённо, мы увидим, что щепка развернётся так, чтобы находиться на прямой, соединяющей шары (см. верхнюю часть рисунка).

Будем помещать щепку в различные места вокруг шаров (см. нижнюю часть рисунка, слева). Заметим, что щепка занимает такие положения, которые «ложатся» на мысленно проведённые дугообразные линии, соединяющие шары; их называют силовыми линиями электрического поля.

Если тела наэлектризованы одноимённо или если мы имеем только одно тело, силовые линии также можно изучать с помощью щепки на игле. Однако проще – при помощи мелко стриженных волос. Опишем этот способ. Над заряженными телами необходимо поместить стекло и посыпать его стриженным волосом. Под действием поля каждый волосок поворачивается определённым образом, и образуется «картина» (см. рисунки). Слева и справа показано расположение волос вокруг одноимённо заряженных шаров, а в центре – разноимённо заряженных шаров, как в опыте со щепкой.

Читайте также:  межкомнатные двери в тамбове недорого

p 08e 4

Изображение силовых линий поля – метод для описания электрических полей. Силовые линии изображают более «густыми» там, где обнаруживается большая сила воздействия поля на тело или тела. Но не следует думать, что силовые линии действительно существуют внутри поля; это физическая модель. Она описывает силу и направление действия поля на помещаемые в него тела (в последнем примере – электрического поля).

В заключение осталось лишь добавить очевидное: электрическое поле всегда «привязано» к заряду, его создавшему, и при перемещении заряда в другую точку пространства электрическое поле практически мгновенно перемещается вслед за зарядом, действуя на другие тела.

Источник

Электрическое поле. Напряженность. Принцип суперпозиции

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Единицы измерения: \(\displaystyle [\text<В>/\text<м>]\) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

f t 3 2

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда \(q\) по поверхности площади \(S\) поверхностная плотность заряда \(\displaystyle \sigma\) постоянна и равна

Принцип суперпозиции полей

f t 3 3

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Заряженный шар

Источник

Напряженность электрического поля. Принцип суперпозиции полей

Урок 61. Физика 10 класс

20210413 vu tg sbscrb2

61

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

20210706 unblock slide1

20210706 unblock slide2

20210706 unblock slide3

Конспект урока «Напряженность электрического поля. Принцип суперпозиции полей»

Напомним, что не так давно мы познакомились с понятием электрического поля. Электрическое поле — это особая форма материи, которая создается покоящимися электрическими зарядами и оказывает воздействие на другие заряды.

Для того, чтобы каким-то образом описать электрическое поле, необходимо ввести количественную характеристику, которая называется напряженностью электрического поля. Рассмотрим электрическое поле, создаваемое зарядом q1. Мы можем помещать в разные точки этого поля заряд q2 и измерять силу, с которой поле заряда q1 действует на заряд q2.

image001

Исходя из закона Кулона:

image002

Таким образом, отношение силы, действующей на заряд со стороны поля, к величине этого заряда не зависит от самого заряда:

image003

Поэтому, можно считать это отношение характеристикой поля. Итак, напряженность электрического поля — это отношение силы, действующей на помещаемый в данную точку поля заряд, к величине этого заряда:

image004

Как видно из формулы, единицей измерения напряженности поля является ньютон на кулон:

image005

Напряженность электрического поля, как и сила, является векторной величиной.

Направление вектора напряженности совпадает с направлением вектора силы, действующей на положительный заряд, помещенный в данное поле.

Исходя из всего выше сказанного, мы можем найти напряженность электрического поля, созданного точечным зарядом:

image006

Как видно из формулы, напряженность поля в данной точке прямо пропорциональна величине заряда и обратно пропорциональна квадрату расстояния между зарядом и данной точкой поля.

Рассмотрим простой пример, когда точечный положительный заряд создает электростатическое поле.

image007

Модуль напряженности данного поля вычисляется по формуле, которую мы только что рассматривали. То есть напряженность будет убывать пропорционально квадрату расстояния между зарядом и данной точкой поля. Таким образом, во множестве точек, равноудаленных от заряда будет наблюдаться одинаковая напряженность. Как вы знаете, множество точек равноудаленных от центра — это есть ни что иное, как сфера.

Теперь, внесем в данное поле так называемый пробный заряд. Пробным зарядом называется точечный положительный заряд.

Как вы знаете, в данном случае возникнет кулоновская сила отталкивания:

image008

Исходя из этого, мы можем определить направление вектора напряженности. Таким образом, мы можем заключить, что вектор напряженности будет направлен вдоль прямой, соединяющей заряд и данную точку поля.

image009

Теперь внесем пробный заряд в поле, создаваемое отрицательным зарядом. В этом случае между отрицательным зарядом и пробным зарядом возникнет кулоновская сила притяжения. Поскольку напряженность сонаправлена с силой Кулона, мы можем заключить, что напряженность поля, создаваемого отрицательным зарядом, будет направлена не от заряда, а к заряду.

Читайте также:  нужно ли мыть полы если покойника не заносили в дом

Возникает резонный вопрос: как охарактеризовать поле, если оно создается не одним, а несколькими зарядами? В этом случае, нам снова нужно воспользоваться пробным зарядом и рассмотреть, силы, действующие на него:

image010

Итак, на рисунке пробный заряд обозначен за q. На него будут действовать кулоновские силы притяжения со стороны зарядов q1 и q3 (поскольку они отрицательные) и кулоновская сила отталкивания со стороны заряда q2 (поскольку он положительный). Как вы знаете, результирующая сила равна векторной сумме всех сил, действующих на данное тело:

image011

Если теперь мы разделим это уравнение на величину пробного заряда, то получим, что напряженность поля в данной точке равна векторной сумме напряженностей полей, создаваемых зарядами:

image012

Этот метод называется принципом суперпозиции полей, который гласит следующее: если в данной точке пространства различные заряженные частицы создают электрические поля, с определенными напряженностями, то результирующая напряженность поля в этой точке будет равна векторной сумме напряженностей этих полей.

Пример решения задачи.

Задача. Два равных по модулю заряда находятся в вершинах равностороннего треугольника, сторона которого равна 2 м. Найдите модуль и направление напряженности в третьей вершине треугольника, если модуль заряда равен 150 нКл.

Источник

Б2.Электрическое поле. Напряжённость поля. Принцип суперпозиции полей. Силовые линии поля. Поле Диполя.

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Электрическое поле наглядно изображается с помощью силовых линий. Силовой линией электрического поля называется линия, в каждой точке которой касательная совпадает с вектором напряженности поля. Силовые линии проводятся с такой густотой, чтобы число линий, пронизывающих воображаемую площадку 1м2, перпендикулярную полю, равнялось величине напряженности поля в данном месте. Тогда по изображению электрического поля можно судить не только о направлении, но и о величине напряженности поля. Электрическое поле называется однородным, если во всех его точках напряженность Е одинакова. В противном случае поле называется неоднородным.

image004

image005

. Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

image006Как следует из формул напряженность поля точечного заряда в вакууме

Напряж.данной точки будет равна 1.Если 3,то 3. Договоримся,что из поожительных выходят,а в отрицательный заряд входят

Имеется конечная площадка ds,тогда поток

Если поверхность замкнутая,то поток через замкнутую поверхность

Замкнт. Поверхность разделяет просторан. На внутреннею часть и на внешнюю,которые между собой не прикасаются.замкн. находится,тогда поток вектора E через заданную поверхность

Имеется несколько зарядов. Теорема

Е—напряженность результирующего поля, а Еi — напряженность поля, создаваемого зарядом Qi. Подставляя последние выраже­ния в, получаем

image008Формула выражаетпринцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.Принцип суперпозиции позволяет рассчитать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.Электрический диполь — система двух равных по модулю разноименных точечных зарядов (+Q,–Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи­тельному и равный расстоянию между ними, называетсяплечом диполя 1. Вектор

image009совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо l, называетсяэлектрическим моментом диполяилидипольным моментом.Согласно принципу суперпозиции напряженность Е поля диполя в произ­вольной точке

image010где Е+ и Е — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряжен­ность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

Б3.Поток вектора напряжённости электрического поля. Теорема Остроградского-Гаусса. Примеры.

Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности Ne.

image011image012

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению

image013

image014т.к image015то

Источник

Оцените статью
Мой дом
Adblock
detector