электрическое поле земли как источник энергии

Все о транспорте газа

1234631090 1

1234631164 2

1234631333 3

1234631423 4

1234631556 5

Форму и интенсивность разряда катушки можно в определенных пределах регулировать от слабого коронного до мощного дугового в зависимости от интенсивности эл. поля Земли и необходимой мощности установки.

Оценка мощности установки

Пусть верхняя точка проводника находится на высоте 100 м., средняя напряженность эл. поля по высоте проводника Еср. = 100 В/м.
Тогда разность потенциалов эл. поля между Землей и верхней точкой проводника будет численно равна:

U = h Eср. = 100 м * 100 В/м = 10 000 вольт.

1234631602 6

Следовательно, в условиях города проводник с эмиттером необходимо поднять выше крыш городских домов и всякого рода антенн, флагштоков, деревьев и шпилей, расположенных поблизости. Еще надежней поднять проводник и эмиттер на аэростате.

О мощности глобального генератора

Такая установка отбирает мощность у глобального генератора.

Источник

Электрическое поле Земли по сей день хранит в себе массу загадок. Наука до сих пор не знает ни настоящий источник создания этого поля, ни механизмы его поддержания, да и многое чего другого. В этой работе мы не ставим перед собой задачу ответить на большинство из данных вопросов, распутать весь клубок хитросплетений Природы в этой области, задача работы другая, начать хотя бы распутывать данный клубок, получить, как говорится, первые метры свободной нити. Для данной цели нам не придется лезть в непролазные дебри современной науки, обойдемся тем, что лежит на поверхности, для этого нам и читателям достаточно будет знаний физики на уровне школьного курса. Не удивляйтесь, читатель, именно школьного курса. Дело в том, что с нашей точки зрения, современная наука так запутала вопрос с электрическим полем Земли, даже элементарные вещи превратились в ребус. За доказательствами далеко ходить не придется, вот самая основа основ, количественная характеристика электрического поля Земли.
В 60-70 годы прошлого столетия, и это совсем не далекие времена, самым популярным и полным источником знаний по данному вопросу были [1] «Фейнмановские лекции по физике» (Глава 9, Электричество и магнетизм). Вот какую количественную оценку полю дает Фейнман:
Цитата 1.
§ 1. Градиент электрического потенциала в атмосфере

В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное электрическое поле Е величиной 100 в/м. Знак поля отвечает отрицательному заряду земной поверхности.
Цитата 2.
Рассмотрев способы измерения электрического поля в атмосфере, продолжим теперь его описание. Измерения прежде всего показывают, что с увеличением высоты поле продолжает существовать, только становится слабее. На высоте примерно 50 км поле уже еле-еле заметно, так что большая часть изменения потенциала (интеграла от Е) приходится на малые высоты. Вся разность потенциалов между поверхностью земли и верхом атмосферы равна почти
400 000 в.
Прошло каких-то 30 лет, какую же количественную характеристику сегодня дает физика электрическому полю Земли. Заглянем в Интернет, наберем в Google комбинацию слов. На первой странице (что косвенно соответствует самой распространенной точке зрения) находим:
Цитата
Электрическое поле Земли

Экспериментально установлено, что возле Земли имеется электрическое поле величиной около 130 В/м. Знак поля соответствует отрицательному заряду Земли. С удалением от Земли (с увеличением высоты) поле продолжает существовать, но становится слабее. На высоте около 50 км поле уже еле-еле заметно. Большая часть изменения потенциала происходит на малой высоте. Вся разность потенциалов между поверхностью Земли и верхом атмосферы составляет около 400 кВ.
Источник http://esis-kgeu.ru/ems/369-ems
Видим, вроде ничего не изменилось, все те же цифры или почти те же, что и у Фейнмана. Смотрим дальше. В той же поисковой системе на той же первой странице находим еще один источник и цитируем:
Цитата
§ 29. Электрическое поле Земли.

Опыт показывает, что электрометр, соединенный с зондом, дает заметное отклонение даже и в том случае, когда поблизости нет специально заряженных тел. При этом отклонение электрометра тем больше, чем выше точка над поверхностью Земли. Это значит, что между различными точками атмосферы, находящимися на разной высоте, имеется разность потенциалов, т. е. околоземной поверхности существует электрическое поле. Изменение потенциала с высотой различно в разное время года и для разных местностей и имеет в среднем вблизи земной поверхности значение около 130 В/м. По мере подъема над Землей поле это быстро ослабевает, и уже на высоте 1 км напряженность его равна только 40 В/м, а на высоте 10 км оно становится ничтожно слабым. Знак этого изменения соответствует отрицательному заряду Земли. Таким образом, мы все время живем и работаем в заметном электрическом поле (см. упражнение 29.1).

Экспериментальное исследование этого поля и соответствующие расчеты показывают, что Земля в целом обладает отрицательным зарядом, среднее значение которого оценивается в полмиллиона кулонов. Этот заряд поддерживается приблизительно неизменным благодаря ряду процессов в атмосфере Земли и вне ее (в мировом пространстве), которые еще далеко не полностью выяснены.

Источник

Проект Заряд

Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и «вечные двигатели» в каждый дом!

Электрическое поле Земли — Источник энергии

В природе существует совершенно уникальный альтернативный источник энергии, экологически чистый, возобновляемый, простой в использовании, который до сих пор нигде не используется. Источник этот — атмосферный электрический потенциал.

1

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера — поверхность Земли — заряжена отрицательно, внешняя сфера — ионосфера — положительно. Изолятором служит атмосфера Земли (Рис.1).

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

А это значит, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой в потоке солнечного ветра.

Чтобы воспользоваться энергией этого генератора, нужно каким то образом подключит к нему потребитель энергии.

Подключиться к отрицательному полюсу — Земле — просто. Для этого достаточно сделать надежное заземление. Подключение к положительному полюсу генератора — ионосфере — является сложной технической задачей, решением которой мы и займемся.

Как и в любом заряженном конденсаторе, в нашем глобальном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Читайте также:  узор на стену своими руками нарисовать колером

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности эл. поля Земли E направлен в общем случае вниз. В своих рассуждениях мы будем использовать только вертикальную составляющую этого вектора. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая называется кулоновской силой. Если умножить величину заряда на напряженность эл. поля в этой точке, то получим как раз величину кулоновской силы Fкул.. Эта кулоновская сила толкает положительные заряды вниз, к земле, а отрицательные — вверх, в облака.

Проводник в электрическом поле

Установим на поверхности Земли металлическую мачту и заземлим ее. Внешнее электрическое поле моментально начнет двигать отрицательные заряды (электроны проводимости) вверх, к верхушке мачты, создавая там избыток отрицательных зарядов. А избыток отрицательных зарядов на верхушке мачты создаст свое электрическое поле, направленное навстречу внешнему полю. Наступает момент, когда эти поля сравняются по величине, и движение электронов прекращается. Это значит, что в проводнике, из которого сделана мачта, электрическое поле равно нулю.

Так работают законы электростатики.

2

Теперь нетрудно подсчитать разность потенциалов между Землей и верхушкой мачты, наведенную внешним электрическим полем (Рис.2.).

Положим высота мачты h = 100 м., средняя напряженность по высоте мачты Еср. = 100 В/м.

Тогда разность потенциалов (э.д.с.) между Землей и верхушкой мачты будет численно равна: U = h * Eср. = 100 м * 100 В/м = 10 000 вольт. (1)

Это — совершенно реальная разность потенциалов, которую можно измерить. Правда, обычным вольтметром с проводами измерить ее не удастся — в проводах возникнет точно такая же э.д.с., как и в мачте, и вольтметр покажет 0. Эта разность потенциалов направлена противоположно вектору напряженности Е электрического поля Земли и стремится вытолкнуть электроны проводимости из верхушки мачты вверх, в атмосферу. Но этого не происходит, электроны не могут покинуть проводник. У электронов недостаточно энергии для того, чтобы покинуть проводник, из которого сделана мачта. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт — величина весьма незначительная. Но электрон в металле не может приобрести такую энергию между столкновениями с кристаллической решеткой металла и поэтому остается на поверхности проводника.

Возникает вопрос: что произойдет с проводником, если мы поможем избыточным зарядам на верхушке мачты покинуть этот проводник?

Ответ простой: отрицательный заряд на верхушке мачты уменьшится, внешнее электрическое поле внутри мачты уже не будет скомпенсировано и начнет снова двигать электроны проводимости вверх к верхнему концу мачты. Значит, по мачте потечет ток. И если нам удастся постоянно удалять избыточные заряды с верхушки мачты, в ней постоянно будет течь ток. Теперь нам достаточно разрезать мачту в любом, удобном нам месте и включить туда нагрузку (потребитель энергии) — и электростанция готова.

3

На рис.3 показана принципиальная схема такой электростанции. Под действием электрического поля Земли электроны проводимости из земли движутся по мачте через нагрузку и далее вверх по мачте к эмиттеру, который освобождает их из поверхности металла верхушки мачты и отправляет их в виде ионов в свободное плавание по атмосфере. Электрическое поле Земли в полном соответствии с законом Кулона поднимает их вверх до тех пор, пока они на своем пути не будут нейтрализованы положительными ионами, которые всегда опускаются вниз из ионосферы под действием того же поля.

Таким образом, мы замкнули электрическую цепь между обкладками глобального электрического конденсатора, который в свою очередь подключен к генератору G, и включили в эту цепь потребитель энергии (нагрузку). Остается решить один важный вопрос: каким образом удалять избыточные заряды с верхушки мачты?

Простейшим эмиттером может служить плоский диск из листового металла с множеством иголок, расположенных по его окружности. Он «насажен» на вертикальную ось и приведен во вращение.

При вращении диска набегающий влажный воздух срывает электроны с его иголок и таким образом освобождает их из металла.

Электростанция с подобным эмиттером уже существует. Правда, ее энергию никто не использует, с нею борются.
Это — вертолет, несущий на длинном металлическом стропе металлическую конструкцию при монтаже высоких строений. Здесь есть все элементы электростанции, изображенной на рис.3, за исключением потребителя энергии (нагрузки). Эмиттером являются лопасти винтов вертолета, которые обдуваются потоком влажного воздуха, мачтой служит длинный стальной строп с металлической конструкцией. И рабочие, которые устанавливают эту конструкцию на место, прекрасно знают, что прикасаться к ней голыми руками нельзя — «ударит током». И дейсвительно, они в этот момент становятся нагрузкой в цепи электростанции.

Безусловно, возможны и другие конструкции эмиттеров, более эффективные, сложные, основанные на разных принципах и физических эффектах см. рис. 4-5.

Эмиттера в виде готового изделия сейчас не существует. Каждый заинтересованный в этой идее вынужден самостоятельно сконструировать себе свой эмиттер.

В помощь таким творческим людям автор приводит ниже свои соображения по конструкции эмиттера.

Наиболее перспективными представляются следующие конструкции эмиттеров.

Первый вариант исполнения эмиттера

4

Молекула воды имеет хорошо выраженную полярность и может легко захватить свободный электрон. Если обдувать паром заряженную отрицательно металлическую пластину, то пар будет захватывать с поверхности пластины свободные электроны и уносить их с собой. Эмиттер представляет собой щелевое сопло, вдоль которого помещен изолированный электрод А и на который подается положительный потенциал от источника И. Электрод А и острые края сопла образуют небольшую заряженную емкость. Свободные электроны собираются на острых краях сопла под воздействием положительного изолированного электрода А. Проходящий через сопло пар срывает электроны с краев сопла и уносит их в атмосферу. На рис. 4 изображено продольное сечение этой конструкции. Поскольку электрод А изолирован от внешней среды, тока в цепи источника э.д.с. нет. И этот электрод нужен здесь только для того, чтобы вместе с острыми краями сопла создать в этом промежутке сильное электрическое поле и концентрировать электроны проводимости на краях сопла. Таким образом, электрод А с положительным потенциалом является своего рода активирующим электродом. Меняя на нем потенциал, можно добиться нужной величины силы тока эмиттера.

Возникает очень важный вопрос — сколько пара нужно подавать через сопло и не получится ли так, что всю энергию станции придется израсходовать на превращение воды в пар? Проведем небольшой подсчет.

В одной граммолекуле воды (18 мл) содержится 6,02 * 1023 молекул воды (число Авогадро). Заряд одного электрона равен 1,6 * 10 (- 19) Кулона. Перемножив эти величины, получим, что на 18 мл воды можно разместить 96 000 Кулонов электрического заряда, а на 1 литре воды — более 5 000 000 Кулонов. А это значит, что при токе 100 А одного литра воды хватит для работы установки в течение 14 часов. Для превращения в пар такого количества воды потребуется совсем небольшой процент вырабатываемой энергии.

Читайте также:  ремонт деформационного шва в кирпичной стене смета

Конечно, прицепить к каждой молекуле воды электрон — задача вряд ли выполнимая, но мы здесь определили предел, к которому можно постоянно приближаться, совершенствуя конструкцию устройства и технологии.

Кроме того, расчеты показывают, что энергетически выгоднее продувать через сопло не пар, а влажный воздух, регулируя его влажность в нужных пределах.

Второй вариант исполнения эмиттера

На вершине мачты установлен металлический сосуд с водой. Сосуд соединен с металлом мачты надежным контактом. В середине сосуда установлена стеклянная капиллярная трубка. Уровень воды в трубке выше, чем в сосуде. Это создает электростатический эффект острия — в верхней части капиллярной трубки создается максимальная концентрация зарядов и максимальная напряженность электрического поля.

Под действием электрического поля вода в капиллярной трубке поднимется и будет распыляться на мелкие капельки, унося с собой отрицательный заряд. При определенной небольшой силе тока вода в капиллярной трубке закипит, и уже пар будет уносить заряды. А это должно увеличить ток эмиттера.

В таком сосуде можно установить несколько капиллярных трубок. Сколько потребуется воды — расчеты см. выше.

Третий вариант исполнения эмиттера. Искровой эмиттер.

При пробое искрового промежутка вместе с искрой из металла выскакивает облако электронов проводимости.

5

На рис.5 показана принципиальная схема искрового эмиттера. От генератора высоковольтных импульсов отрицательные импульсы поступают на мачту, положительные — на на электрод, который образует искровой промежуток с верхушкой мачты. Получается нечто подобное автомобильной свече зажигания, но по устройству значительно проще.
Генератор высоковольтных импульсов принципиально мало чем отличается от обычной бытовой газовой зажигалки китайского производства с питанием от одной пальчиковой батарейки.

Главное достоинство такого устройства — возможность регулировать ток эмиттера с помощью частоты разрядов, величины искрового промежутка, можно сделать несколько искровых промежутков и пр.

Генератор импульсов можно установить в любом удобном месте, совсем не обязательно на верхушке мачты.

Но существует один недостаток — искровые разряды создают радиопомехи. Поэтому верхушку мачты с искровыми промежутками нужно экранировать цилиндрической сеткой, обязательно изолированной от мачты.

Четвертый вариант исполнения эмиттера

Еще одна возможность — создать эмиттер на принципе прямой эмиссии электронов из материала эмиттера. Для этого нужен материал с очень низкой работой выхода электрона. Такие материалы существуют давно, например, паста из оксида бария-0,99 эв. Возможно, сейчас есть что-либо получше.

В идеале это должен быть комнатнотемпературный сверхпроводник (КТСП), которых пока не существует в природе. Но по разным сообщениям он должен скоро появиться. Здесь вся надежда на нанотехнологии.

Достаточно поместить на верхушку мачты кусок КТСП — и эмиттер готов. Проходя по сверхпроводнику, электрон не встречает сопротивления и очень быстро приобретает энергию, необходимую для выхода из металла (около 5 эв.)

И еще одно важное замечание. По законам электростатики иапряженность электрического поля Земли наиболее высока на возвышенностях — на вершинах холмов, сопок, гор и т. п. В низинах, впадинах и углублениях она минимальна. Поэтому такие устройства лучше строить на самых высоких местах и подальше от высоких строений или же устанавливать их на крышах самых высоких строений.

Еще хорошая идея — поднять проводник с помощью аэростата. Эмиттер, конечно, нужно устанавливать на верху аэростата. В таком случае можно получить достаточно большой потенциал для самопроизвольной эмиссии электронов из металла, придав ему форму отрия, и, значит, никаких сложных эмиттеров в этом случае не потребуется.

Существует еще одна хорошая возможность получить эмиттер. В промышленности применяется электростатическая окраска металла. Распыленная краска, вылетая из распылителя, несет на себе электрический заряд, в силу чего и оседает на окрашиваемый металл, на который подается заряд противоположного знака. Технология отработана.

Такое устройство, которое заряжает распыленную краску, как раз и является настоящим эмиттером эл. зарядов. Остается только приспособить его к описанной выше установке и заменить краску водой, если возникнет необходимомть в воде.

Вполне возможно, что влаги, всегда содержащейся в воздухе, будет достаточно для работы эмиттера.

Не исключено, что в промышленности существуют и другие подобные устройства, которые легко можно превратить в эмиттер.

В результате наших действий мы подключили потребитель энергии к глобальному генератору электрической энергии. К отрицательному полюсу — Земле — мы подключились с помощью обычного металлического проводника (заземления), а к положительному полюсу — ионосфере — с помощью весьма специфического проводника — конвективного тока. Конвективные токи — это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Это и обычные конвективные восходящие струи, которые несут отрицательные заряды в облака, это и смерчи (торнадо). которые тащат к земле сильно заряженную положительными зарядами облачную массу, это и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. И такие токи достигают очень больших значений.

Если мы создадим достаточно эффективный эмиттер, который сможет освобождать из верхушки мачты (или нескольких мачт), положим, 100 кулонов зарядов в секунду (100 ампер.), то мощность построенной нами электростанции будет равна 1000 000 ватт или 1 мегаватт. Вполне достойная мощность!

Такая установка незаменима в отдаленных поселениях, на метеостанциях и других удаленных от цивилизации местах.

• Из вышесказанного можно сделать следующие выводы:

• Источник энергии является исключительно простым и удобным в использовании.

• На выходе получаем самый удобный вид энергии — электроэнергию.

• Источник экологически чист: никаких выбросов, никакого шума и т.п.

• Установка исключительно проста в изготовлении и эксплуатации.

• Исключительная дешевизна получаемой энергии и еще масса других достоинств.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 20% от его среднего значения.

В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы эл.поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади непосредственно под грозовой ячейкой.

Источник

АЛЬТЕРНАТИВНЫЙ ИСТОЧНИК ЭНЕРГИИ — ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ЗЕМЛИ

Ниже излагается способ получения энергии из этого источника. Способ основан на свойствах электрического поля Земли и на базовых законах электростатики.

Читайте также:  теплый пол и радиаторы на одном коллекторе

Атмосферное электричество

( Рис.1 ) Электрическая схема глобального конденсатора

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

А это значит, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой в потоке солнечного ветра.

Чтобы воспользоваться энергией этого генератора, нужно каким то образом подключит к нему потребитель энергии.

Как и в любом заряженном конденсаторе, в нашем глобальном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Электрическое поле Земли является потенциальным полем как и любое эл. поле. Каждой точке этого поля соответствует свой потенциал. Точки с одинаковым потенциалом образуют эквипотенциальные поверхности.


Проводник в электрическом поле

Но избыток отрицательных зарядов в верхней точке проводника создаст свое электрическое поле.

Мы получили систему из двух эл. полей: эл. поля Земли E1 и эл. поля избыточных зарядов в верхней точке проводника E2.
Электрические поля Земли (слева) и верхней точки проводника (справа)

Эмиттер может быть построен на базе высоковольтного генератора небольшой мощности, который способен создать коронный разряд вокруг излучающего электрода на верхушке проводника.

Такие высоковольтные генераторы используются в промышленности в дымоулавливателях, ионизаторах воздуха, установках для электростатической окраски металлов и различных бытовых приборах.

Генератор создает вокруг излучателя электронов проводимости искровой, коронный или кистевой разряд. Такой разряд является проводящим плазменным каналом, по которому электроны проводимости свободно стекают в атмосферу уже под действием эл.поля Земли.

001

Для этой же цели можно использовать трансформатор или катушку Теслы.

В 1891 году Никола Тесла создал свой знаменитый высокочастотный высоковольтный трансформатор, который он использовал для экспериментов и демонстрации своих опытов.
Катушка Теслы

tech alternativa energy05Сейчас это устройство называют катушкой Теслы (Tesla coil). В промышленности это изобретение не нашло применения. Оно используется главным образом для всякого рода аттракционов.

Каналы этих разрядов в ионизированном воздухе являюся хорошим проводником для электронов проводимости, которые стремятся вырваться из металла проводника в атмосферу. И электроны проводимости по каналам разрядов легко покидают проводник и уходят в атмосферу уже под действием эл. поля Земли, которое концентрируется на верхней точке проводника.

Форму и интенсивность разряда катушки можно в определенных пределах регулировать от слабого коронного до мощного дугового в зависимости от интенсивности эл. поля Земли и необходимой мощности установки.


Оценка мощности установки

Пусть верхняя точка проводника находится на высоте 100 м., средняя напряженность эл. поля по высоте проводника Еср. = 100 В/м.
Тогда разность потенциалов эл. поля между Землей и верхней точкой проводника будет численно равна:

U = h Eср. = 100 м * 100 В/м = 10 000 вольт.

Сила тока в проводнике зависит в основном от эффективности работы эмиттера. Если с помощью эмиттера мы сможем получить ток 10 А., то полная мощность установки составит 100 кВт.

При работе эмиттера освободившиеся электроны скапливаются в атмосфере над эмиттером и создают отрицательно заряженное облако. Эл. поле этого облака направлено против эл. поля Земли и уменьшает его. При наличии ветра облако сносится ветром и его влияние будет незначительным. В отсутствии ветра это облако удаляется только кулоновскими силами эл. поля над эмиттером, образуя конвективную струю, направленную вверх. В этом случае сила тока установки будет ограничиваться силой тока конвективной струи.

Особенности электрического поля

Эл. поле над земной поверхностью обладает такими особенностями, которые обязательно нужно учитывать.

Над ровной подстилающей поверхностью такой, как море или широкая равнина, эквипотенциальные поверхности поля расположены примерно параллельно друг другу, как показано на рис. 2 слева.

Но как только в нем появляется заземленный проводник, это поле меняется и становится примерно таким, как показано на рис. 3.

Эквипотенциальные линии поля над заземленными проводниками

tech alternativa energy06Эффект получается таким, как будто это поле поднялось и повисло на верхушке этого проводника. Эквипотенциальные линии над проводником сконценторировались, а значит увеличился вектор напряженности эл. поля.

В то же время у основания проводника эл. поле уменьшилось. Если два заземленных проводника расположены недалеко друг от друга, то эл. поле будет выглядеть примерно так, как показано на рис. 6.

Все эл. поле располагается выше заземленных проводников. Между этими проводниками у земной поверхности эл. поле близко к нулю.
Такими проводниками являются деревья, линии эл. передач, высокие постройки, и, конечно, все городские дома.

Следовательно, в условиях города проводник с эмиттером необходимо поднять выше крыш городских домов и всякого рода антенн, флагштоков, деревьев и шпилей, расположенных поблизости. Еще надежней поднять проводник и эмиттер на аэростате.

001

О мощности глобального генератора

Такая установка отбирает мощность у глобального генератора.

Не приведет ли это к ослаблению эл. поля Земли?

У нас нет возможности замерить мощность этого генератора. Но по некоторым косвенным признакам можно судить о его мощности.

Все дело в том, что испаряющаяся с поверхности штормового океана вода уносит с собой огромное количесво отрицательных зарядов.

Испаряющиеся молекулы воды в таких условиях легко захватывают отрицательные заряды и уносят их с собой. А электрическое поле Земли в полном соответствии с законом Кулона двигает эти заряды вверх, добавляя воздуху подъемную силу.

Но такой расход мощности никак не сказывается на величине электрического поля Земли.
Если учесть, что мощность среднего урагана превышает мощность всех электростанций мира, то можно заключить, что широкое и повсеместное использование этой энергии никак не скажется на электрических параметрах нашей планеты.

Выводы

Из вышесказанного можно сделать следующие выводы:

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 30% от его среднего значения.
В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы эл.поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади непосредственно под грозовой ячейкой и в течение короткого времени.

Автор: Курилов Юрий Михайлович, Инженер-судоводитель, Санкт-Петербург
Дата публикации 03.03.2008гг

Источник

Оцените статью
Мой дом
Adblock
detector