электромагнитный импульс это кратковременное электромагнитное поле возникающее

Электромагнитный импульс

См. также

Литература

Полезное

Смотреть что такое «Электромагнитный импульс» в других словарях:

Электромагнитный импульс — см. Импульс электромагнитный. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

электромагнитный импульс — ЭМИ Изменение уровня электромагнитной помехи в течение времени, соизмеримого со временем установления переходного процесса в техническом средстве, на которое это изменение воздействует. [ГОСТ 30372—95 ] Тематики электромагнитная… … Справочник технического переводчика

электромагнитный импульс — elektromagnetinis impulsas statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Galingi trumpalaikiai elektromagnetiniai laukai, kurie atsiranda orinių ir aukštybinių branduolinių sprogimų metu; branduolinio sprogimo naikinamasis veiksnys … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

электромагнитный импульс — elektromagnetinis impulsas statusas T sritis Standartizacija ir metrologija apibrėžtis Trumpalaikis elektromagnetinis laukas. atitikmenys: angl. electromagnetic impulse vok. elektromagnetischer Impuls, m rus. электромагнитный импульс, m pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электромагнитный импульс — elektromagnetinis impulsas statusas T sritis fizika atitikmenys: angl. electromagnetic impulse vok. elektromagnetischer Impuls, m rus. электромагнитный импульс, m pranc. impulsion électromagnétique, f … Fizikos terminų žodynas

Электромагнитный импульс — кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Является поражающим фактором ядерного оружия;… … Словарь военных терминов

Электромагнитный импульс — 1. Изменение уровня электромагнитной помехи в течение времени, соизмеримого со временем установления переходного процесса в техническом средстве, на которое это изменение воздействует Употребляется в документе: ГОСТ 30372 95 Совместимость… … Телекоммуникационный словарь

Электромагнитный импульс ядерного взрыва — кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Спектр частот электромагнитного импульса… … Морской словарь

электромагнитный импульс от электростатических разрядов — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrostatic discharge electromagnetic pulse … Справочник технического переводчика

Источник

Импульс электромагнитный

Электромагнитный ускоритель с изменяемым удельным импульсом — VASIMR на испытательном стенде Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket, VASIMR™) электромагнитный плазменный ускоритель, предназначен для реактивного … Википедия

Электромагнитный импульс ядерного взрыва — кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Спектр частот электромагнитного импульса… … Морской словарь

электромагнитный импульс — ЭМИ Изменение уровня электромагнитной помехи в течение времени, соизмеримого со временем установления переходного процесса в техническом средстве, на которое это изменение воздействует. [ГОСТ 30372—95 ] Тематики электромагнитная… … Справочник технического переводчика

электромагнитный импульс от электростатических разрядов — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrostatic discharge electromagnetic pulse … Справочник технического переводчика

электромагнитный импульс, возникающий при ударе молнии — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN lightning electromagnetic pulse … Справочник технического переводчика

ИМПУЛЬС — внезапное и быстроисчезающее повышение какого либо параметра в системе (давления, температуры, освещённости и др.), а также единичный сигнал конечной энергии, существенно отличный от нуля в течение ограниченного времени; характеризуется фазой и… … Большая политехническая энциклопедия

ЭЛЕКТРОМАГНИТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — (плазменный магнитогидродинамический), электрический ракетный двигатель, в котором рабочее тело находится в состоянии плазмы и разгоняется с помощью воздействующего на него электромагнитного поля. Удельный импульс 15 100 км/с … Большой Энциклопедический словарь

Источник

Электромагнитный импульс ядерного взрыва

Смотреть что такое «Электромагнитный импульс ядерного взрыва» в других словарях:

Электромагнитный импульс ядерного взрыва — кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве с атомами окружающей среды. Спектр частей Э.м.и. соответствует диапазону… … Гражданская защита. Понятийно-терминологический словарь

электромагнитный импульс ядерного взрыва, ЭМИ ЯВ — 3.25 электромагнитный импульс ядерного взрыва, ЭМИ ЯВ (nuclear electromagnetic pulse, NEMP): Электромагнитные поля различных видов, вызванные ядерным взрывом. Источник … Словарь-справочник терминов нормативно-технической документации

электромагнитный импульс высотного ядерного взрыва, ЭМИ ВЯВ — 3.16 электромагнитный импульс высотного ядерного взрыва, ЭМИ ВЯВ (high altitude electromagnetic pulse, HEMP): Электромагнитный импульс, вызванный ядерным взрывом вне атмосферы. Примечание Типичная высота взрыва равна 30 км. Источник … Словарь-справочник терминов нормативно-технической документации

Поражающие факторы ядерного взрыва — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

ИМПУЛЬС — внезапное и быстроисчезающее повышение какого либо параметра в системе (давления, температуры, освещённости и др.), а также единичный сигнал конечной энергии, существенно отличный от нуля в течение ограниченного времени; характеризуется фазой и… … Большая политехническая энциклопедия

Поражающее воздействие ядерного оружия — физические явления и процессы, возникающие при ядерном взрыве, вызывающие поражение людей и объектов. К ним относятся ударная волна, излучение световое, проникающая радиация, загрязнение радиоактивное и импульс электромагнитный. Распределение… … Словарь черезвычайных ситуаций

Читайте также:  балкон и комната идеи ремонта

Поражающие факторы ядерного оружия — физические процессы и явления, которые возникают при ядерном взрыве и определяют его поражающее воздействие К ним относятся ударная волна, световые излучения, проникающая радиация, радиоактивное заражение и электромагнитный импульс. Характер,… … Морской словарь

Ядерный взрыв — … Википедия

Источник

Поражающими факторами ядерного взрыва являются:

Ударная волна ядерного взрыва – один из его основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – в воздухе, воде или грунте, ее называют соответственно: воздушной, подводной, сейсмовзрывной.

Воздушной ударной волной называют область резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Обладая большим запасом энергии, ударная волна ядерного взрыва способна наносить поражения людям, разрушать различные сооружения, вооружение и военную технику и другие объекты на значительных расстояниях от места взрыва.

При наземном взрыве фронт ударной волны представляет собой полусферу, при воздушном взрыве в первый момент – сферу, затем полусферу. Кроме того, при наземном и воздушном взрыве часть энергии расходуется на образование сейсмовзрывных волн в грунте, а также на испарение грунта и образование воронки.

Для объектов большой прочности, например, убежищ тяжелого типа, радиус зоны разрушающего действия ударной волны будет наибольшим при наземном взрыве. Для таких малопрочных объектов, как жилые здания, наибольшим радиус разрушения будет при воздушном взрыве.

Поражение людей воздушной ударной волной может возникать в результате непосредственного и косвенного воздействия (летящими обломками сооружений, падающими деревьями, осколками стекла, камнями грунтом).

Радиусы зон поражения личного состава в положении лежа в значительно меньше, чем в положении стоя. При расположении людей в траншеях, щелях радиусы зон поражения уменьшаются примерно в 1,5 — 2 раза.

Лучшими защитными свойствами обладают закрытые помещения подземного и котлованного типа (блиндажи, убежища), уменьшая радиус поражения ударной волной не менее, чем в 3 – 5 раз.

Таким образом, надежной защитой личного состава от ударной волны являются инженерные сооружения.

Ударная волна выводит из строя и вооружение. Так, слабые повреждения ЗУР наблюдаются при избыточном давлении ударной волны 0,25 – 0,3 кгс/см 2 . При слабых повреждениях у ракет происходит местное обжатие корпуса, могут выйти из строя отдельные приборы и агрегаты. К примеру, при взрыве боеприпаса мощностью 1 Мт ракеты выходят из строя на расстоянии 5…6 км, автомобили и подобная им техника – 4…5 км.

Световое излучение ядерного взрыва представляет собой электромагнитное излучение оптического диапазона, включающее ультрафиолетовую (0,01 — 0,38 мк), видимую (0,38 — 0,77 мк) и инфракрасную (0,77-340 мк) области спектра.

Источником светового излучения является светящаяся область ядерного взрыва, температура которой вначале достигает нескольких десятков миллионов градусов, а затем остывает и в своем развитии проходит три фазы: начальную, первую и вторую.

В зависимости от мощности взрыва длительность начальной фазы светящейся области составляет доли миллисекунды, первой – от нескольких миллисекунд до десятков и сотен миллисекунд, а второй – от десятых долей секунды до десятков секунд. За время существования светящейся области температура внутри ее изменяется от миллионов до нескольких тысяч градусов. Основная доля энергии светового излучения (до 90%) приходится на вторую фазу. Время существования светящейся области возрастает с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра (до 1 кт) свечение продолжается десятые доли секунды; малого (от 1 до 10 кт) – 1 … 2 с; среднего (от 10 до 100 кт) – 2…5 с; крупного (от 100 кт до 1 Мт) – 5 … 10 с; сверхкрупного (свыше 1 Мт) – несколько десятков секунд. Размеры светящейся области также возрастают с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра максимальный диаметр светящейся области составляет – 20 … 200 м, малого – 200 … 500, среднего – 500 … 1000 м, крупного – 1000 … 2000 м и сверхкрупного – несколько километров.

Основным параметром, определяющим поражающую способность светового излучения ядерного взрыва, является световой импульс.

Световой импульс уменьшается с увеличением расстояния до эпицентра взрыва и зависит от вида взрыва и состояния атмосферы.

Поражение людей световым излучением выражается в появлении ожогов различных степеней открытых и защищенных обмундированием участков кожи, а также в поражении глаз. Например, при взрыве мощностью 1 Мт (U = 9 кал/см 2 ) поражаются открытые участки кожи человека, вызывая ожог 2-ой степени.

Под воздействием светового излучения возможно возгорание различных материалов и возникновение пожаров. Световое излучение в значительной степени ослабляется облачностью, зданиями населенных пунктов, лесом. Однако, в последних случаях поражение личного состава может быть вызвано за счет образования обширных зон пожаров.

Защита от светового излучения в подразделениях включает выполнение следующих мероприятий:

повышение коэффициента отражения светового излучения поверхностью объекта (применение материалов, красок, обмазок светлых тонов, различных металлических отражателей);

повышение стойкости и защитных свойств объектов к действию светового излучения (применение увлажнения, снежных обсыпок, использование огнестойких материалов, покрытие глиной и известью, пропиткой чехлов и тентов огнестойкими составами);

использование индивидуальных средств защиты, таких как общевойсковой комплексный защитный костюм (ОКЗК), общевойсковой защитный комплект (ОЗК), импрегнированное обмундирование, защитные очки и т.п.

Таким образом, ударная волна и световое излучение ядерного взрыва являются его основными поражающими факторами. Своевременное и умелое использование простейших укрытий, рельефа местности, инженерных фортификационных сооружений, индивидуальных средств защиты, профилактических мероприятий позволит ослабить, а в ряде случаев исключить воздействие ударной волны и светового излучения на личный состав, вооружение и военную технику.

Читайте также:  черное платье в пол с вырезом на ноге

1.1

Рис. 1. Схема распространения гамма-излучения ядерного взрыва

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Поражающее действие проникающей радиации характеризуется дозой излучения, т.е. количеством энергии ионизирующих излучений, поглощенной единицей массы облучаемой среды, измеряемой в радах ( рад).

Нейтроны и γ-излучение ядерного взрыва действуют на любой объект практически одновременно. Поэтому общее поражающее действие проникающей радиации определяется суммированием доз γ-излучения и нейтроно, где:

Доза излучения зависит от типа ядерного заряда, мощности и вида взрыва, а также от расстояния до центра взрыва.

Проникающая радиация является одним из основных поражающих факторов при взрывах нейтронных боеприпасов и боеприпасов деления сверхмалой и малой мощности. Для взрывов большой мощности радиус поражения проникающей радиацией значительно меньше радиусов поражения ударной волной и световым излучением. Особо важное значение проникающая радиация приобретает в случае взрывов нейтронных боеприпасов, когда основная доля дозы излучения образуется быстрыми нейтронами.

Поражающее воздействие проникающей радиации на личный состав и на состояние его боеспособности зависит от полученной дозы излучения и времени, прошедшего после взрыва, что вызывает лучевую болезнь. В зависимости от полученной дозы излучения различают четыре степени лучевой болезни.

Лучевая болезнь I степени (легкая) возникает при суммарной дозе излучения 150 – 250 рад. Скрытый период продолжается 2 – 3 недели, после чего появляется недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание лейкоцитов и тромбоцитов. Лучевая болезнь I степени излечивается в течение 1,5 – 2 месяцев в стационаре.

Лучевая болезнь II степени (средняя) возникает при суммарной дозе излучения 250 – 400 рад. Скрытый период длится около 2 – 3 недель, затем признаки заболевания выражаются более ярко: наблюдается выпадение волос, меняется состав крови. При активном лечении наступает выздоровление через 2 — 2,5 месяца.

Лучевая болезнь III степени (тяжелая) наступает при дозе излучения 400 – 700 рад. Скрытый период составляет от несколько часов до 3 недель.

Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6 – 8 месяцев, но остаточные явления наблюдаются значительно дольше.

Тяжесть поражения в известной мере зависит от состояния организма до облучения и его индивидуальных особенностей. Сильное переутомление, голодание, болезнь, травмы, ожоги повышают чувствительность организма к воздействию проникающей радиации. Сначала человек теряет физическую работоспособность, а затем – умственную.

При больших дозах излучения и потоках быстрых нейтронов утрачивают работоспособность комплектующие элементы систем радиоэлектроники. При дозах более 2000 рад стекла оптических приборов темнеют, окрашиваясь в фиолетово – бурый цвет, что снижает или полностью исключает возможность их использования для наблюдения. Дозы излучения 2 – 3 рад приводят в негодность фотоматериалы, находящиеся в светонепроницаемой упаковке.

Защитой от проникающей радиации служат различные материалы, ослабляющие γ-излучение и нейтроны. При решении вопросов защиты следует учитывать разницу в механизмах взаимодействия γ-излучения и нейтронов со средой, что определяет выбор защитных материалов. Излучение сильнее всего ослабляется тяжелыми материалами, имеющими высокую электронную плотность (свинец, сталь, бетон). Поток нейтронов лучше ослабляется легкими материалами, содержащими ядра легких элементов, например водорода (вода, полиэтилен).

В подвижных объектах для защиты от проникающей радиации необходима комбинированная защита, состоящая из легких водородосодержащих веществ и материалов с высокой плотностью. Средний танк, например, без специальных противорадиационных экранов имеет кратность ослабления проникающей радиации равную примерно 4, что недостаточно для обеспечения надежной защиты экипажа. Поэтому вопросы защиты личного состава должны решаться выполнением комплекса различных мероприятий.

Наибольшей кратностью ослабления от проникающей радиации обладают фортификационные сооружения (перекрытые траншеи – до 100, убежища – до 1500).

В качестве средств, ослабляющих действие ионизирующих излучений на организм человека, могут быть использованы различные противорадиационные препараты (радиопротекторы).

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на вооружении и военной технике и других объектах.

Основной причиной генерации ЭМИ длительностью менее 1с считают взаимодействие γ-квантов и нейтронов с газом во фронте ударной волны и вокруг него. Важное значение имеет также возникновение асимметрии в распределении пространственных электрических зарядов, связанных с особенностями распространения излучения и образования электронов.

При наземном или низком воздушном взрыве γ-кванты, испускаемые из зоны протекания ядерных реакций, выбивают из атомов воздуха быстрые электроны, которые летят в направлении движения квантов со скоростью, близкой к скорости света, а положительные ионы (остатки атомов) остаются на месте. В результате такого разделения электрических зарядов в пространстве образуются элементарные и результирующие электрические и магнитные поля, которые и представляют собой ЭМИ.

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии порядка нескольких километров от центра взрыва.

При высотном ядерном взрыве (Н > 10 км) могут возникать поля ЭМИ в зоне взрыва и на высотах 20 – 40 км от поверхности земли. ЭМИ в зоне такого взрыва возникает за счет быстрых электронов, которые образуются в результате взаимодействия квантов ядерного взрыва с материалом оболочки боеприпаса и рентгеновского излучения с атомами окружающего разреженного воздушного пространства.

Читайте также:  варианты крепления зеркала к стене

Испускаемое из зоны взрыва излучение в направлении поверхности земли начинает поглощаться в более плотных слоях атмосферы на высотах 20 – 40 км, выбивая из атомов воздуха быстрые электроны. В результате разделения и перемещения положительных и отрицательных зарядов в этой области и в зоне взрыва, а также при взаимодействии зарядов с геомагнитным полем земли возникает электромагнитное излучение, которое достигает поверхности земли в зоне радиусом до нескольких сот километров. Продолжительность ЭМИ – несколько десятых долей секунды.

Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Когда амплитуда ЭМИ не слишком большая, то возможно срабатывание средств защиты (плавких вставок, грозоразрядников) и нарушение работоспособности линий.

Защита от ЭМИ достигается экранированием как линий энергоснабжения и управления, так и собственно аппаратуры, а также созданием такой элементной базы радиотехнических средств, которая устойчива к воздействию ЭМИ. Все наружные линии, например, должны быть двухпроводными, хорошо изолированными от земли, с малоинерционными разрядниками и плавкими вставками. Для защиты чувствительного электронного оборудования целесообразно использовать разрядники с небольшим порогом зажигания. Важное значение имеют правильная эксплуатация линий, контроль исправности средств защиты, а также организация обслуживания линий в процессе эксплуатации.

Радиоактивное заражение местности, приземного слоя атмосферы, воздушного пространства, воды и других объектов возникает в результате выпадения радиоактивных веществ из облака ядерного взрыва при его перемещении под воздействием ветра.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва, но и на расстоянии десятков и даже сотен километров от него. В отличие от других поражающих факторов, действие которых проявляется в течение относительно короткого времени после ядерного взрыва, радиоактивное заражение местности может быть опасным на протяжении нескольких лет и десятков лет после взрыва.

Наиболее сильное заражение местности происходит от наземных ядерных взрывов, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией. Сами радиоактивные вещества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть измерена какими – либо физическими или химическими методами.

Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30 – 50 мкм, принято называть ближним следом заражения. На больших расстояниях – дальний след – небольшое заражение местности, которое в течение длительного времени не влияет на боеспособность личного состава. Схема формирования следа радиоактивного облака наземного ядерного взрыва представлена на рисунке 2.

1.2

Рис. 2. Схема формирования следа радиоактивного облака наземного ядерного взрыва

Источниками радиоактивного заражения при ядерном взрыве являются:

При наземном ядерном взрыве светящаяся область касается поверхности земли и образуется воронка выброса. Значительное количество грунта, попавшего в светящуюся область, плавится, испаряется и перемешивается с радиоактивными веществами.

По мере остывания светящейся области и ее подъема пары конденсируются, образуя радиоактивные частицы разных размеров. Сильный прогрев грунта и приземного слоя воздуха способствует образованию в районе взрыва восходящих потоков воздуха, которые формируют пылевой столб («ножку» облака). Когда плотность воздуха в облаке взрыва станет равной плотности окружающего воздуха, подъем облака прекращается. При этом, в среднем за 7 – 10 мин. облако достигает максимальной высоты подъема, которую иногда называют высотой стабилизации облака.

Границы зон радиоактивного заражения с разной степенью опасности для личного состава можно характеризовать как мощностью дозы излучения (уровнем радиации) на определенное время после взрыва, так и дозой до полного распада радиоактивных веществ.

По степени опасности зараженную местность по следу облака взрыва принято делить на 4 зоны.

Зона А (умеренного заражения), площадь которой составляет 70 – 80% площади всего следа.

Зона Б (сильного заражения). Дозы излучения на внешней границе этой зоны Д внешн = 400 рад, а на внутренней — Д внутр. = 1200 рад. На долю этой зоны приходится примерно 10% площади радиоактивного следа.

Зона В (опасного заражения). Дозы излучения на ее внешней границе Д внешн = 1200 рад, а на внутренней — Д внутр = 4000 рад. Эта зона занимает примерно 8 – 10% площади следа облака взрыва.

Зона Г (чрезвычайно опасного заражения). Дозы излучения на ее внешней границе более 4000 рад.

На рисунке 3 показана схема нанесения прогнозируемых зон заражения при одиночном наземном ядерном взрыве. Синим цветом наносится зона Г, зеленым – Б, коричневым – В, черным – Г.

1.3

Рис. 3. Схема нанесения прогнозируемых зон заражения при одиночном ядерном взрыве

Потери людей, вызванные действием поражающих факторов ядерного взрыва, принято делить на безвозвратные и санитарные.

К безвозвратным потерям относят погибших до оказания медицинской помощи, а к санитарным – пораженных, поступивших для лечения в медицинские подразделения и учреждения.

Источник

Оцените статью
Мой дом
Adblock
detector