электростатическое поле создается положительно заряженной бесконечной нитью

Электростатическое поле создается положительно заряженной бесконечной нитью

заряд нити линейной плотностью

Электростатическое поле создается положительно заряженной бесконечной нитью. Протон, двигаясь от нити под действием поля вдоль линии напряженности с расстояния r1 = 1 см до r2 = 5 см, изменил свою скорость от 1 до 10 Мм/с. Определите линейную плотность заряда нити.

Две длинные одноименно заряженные нити расположены на расстоянии r = 10 см друг от друга. Линейная плотность заряда на нитях τ1 = τ2 = 10 мкКл/м. Найти модуль и направление напряженности E результирующего электрического поля в точке, находящейся на расстоянии a = 10 см от каждой нити.

Определить плотность энергии электрического поля, созданного в вакууме равномерно заряженной прямой длинной нитью с линейной плотностью заряда τ = 3·10 –8 Кл/м, в точке, расположенной на расстоянии r = 10 cм от середины нити.

С какой силой на единицу длины отталкиваются две одноименно заряженные бесконечные параллельные прямолинейные нити, если линейная плотность заряда на них составляет τ = 0,2 мкКл/м, а расстояние между нитями равно r = 5 см.

При перемещении электрона в поле бесконечной заряженной нити из точки, расположенной на расстоянии 0,1 м от нити, в точку удаленную на 0,3 м от нити совершена работа 5 эВ. Вычислить линейную плотность заряда на нити.

Найти силу взаимодействия между тонкой бесконечной нитью с линейной плотностью заряда τ1 = 0,278 нКл/м и тонким стержнем длиной l = 17,1 см с линейной плотностью заряда τ2 = 0,4 нКл/м, если их оси взаимно перпендикулярны, а ближайший конец стержня, лежащего в радиальной плоскости, находится в 10 см от нити.

Бесконечная равномерно заряженная нить и шар расположены, как показано на рис. 8. Заряд шара 10 –9 Кл; линейная плотность заряда на нити 5·10 –10 Кл/см; а = 10 см. Окружающая среда — воздух. Определить: напряженность поля в точках A и В; работу перемещения заряда 10 –8 Кл из точки А в точку В. Считать, что расположение зарядов не нарушено взаимодействием.f1363

Две длинные одноименно заряженные нити расположены на расстоянии r = 10 см друг от друга. Линейные плотности заряда на нитях τ1 = 10 мкКл/м и τ2 = 7 мкКл/м. Найти напряженность Е результирующего электрического поля в точке, находящейся на расстоянии а = 8 см от первой нити и b = 6 см от второй.

Две параллельные нити с линейными плотностями зарядов τ1 = –40 мкКл/м и τ2 = –30 мкКл/м закреплены на расстоянии l = 100 см друг от друга. Определить, в какой точке на прямой, проходящей через нити, следует поместить точечный заряд так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещение заряда возможны только вдоль прямой, проходящей через закрепленные нити.

Используя теорему Гаусса, найдите напряженность поля, создаваемого бесконечно протяженной заряженной нитью, как функцию расстояния r от нити. Линейная плотность заряда нити равна τ = 5,0 нКл/м. Постройте график зависимости Е = f(r).

Источник

Электростатика

21. Длинный прямой провод, расположенный в вакууме, несет заряд, равномерно распределенный по всей длине провода с линейной плотностью 2 нКл/м. Определите напряженность Е электростатического поля на расстоянии r = 1 м от провода.

21

22. Внутренний цилиндрический проводник длинного прямолинейного коаксиального провода радиусом R1 = 1,5 мм заряжен с линейной плотностью τ1 = 0,2 нКл/м. Внешний цилиндрический проводник этого провода радиусом R2 = 3 мм заряжен с линейной плотностью τ2 = – 0,15 нКл/м. Пространство между проводниками заполнено резиной (ε = 3). Определить напряженность электростатического поля в точках, лежащих от оси провода на расстояниях: 1) r1 = 1 мм; 2) r2 = 2 мм; 3) r3 = 5 мм.

Читайте также:  авито орел двери бу металлические

22

23. Электростатическое поле создается положительно заряженной с постоянной поверхностной плотностью σ = 10 нКл/м 2 бесконечной плотностью. Какую работу надо совершить для того, чтобы перенести электрон вдоль линии напряженности с расстояния r1 = 2 см до r2 = 1 см?

23

24. Электростатическое поле создается положительно заряженной бесконечной нитью с постоянной линейной плотностью τ = 1 нКл/см. Какую скорость приобретет электрон, приблизившись под действием поля к нити вдоль линии напряженности с расстояния r1 = 2 см до r2 = 1 см?

24

25. Одинаковые заряды Q = 100 нКл расположены в вершинах квадрата со стороной a = 10 см. Определить потенциальную энергию этой системы.

25

26. В боровской модели атома водорода электрон движется по круговой орбите радиусом r = 52,8 пм, в центре которой находится протон. Определить: 1) скорость электрона на орбите; 2) потенциальную энергию электрона в поле ядра, выразив её в электрон-вольтах.

26

27. Кольцо радиусом r = 5 см из тонкой проволоки несет равномерно распределенный заряд Q = 10 нКл. Определить потенциал φ электростатического поля: 1) в центре кольца; 2) на оси, проходящей через центр кольца, в точке, удаленной на расстояние a = 10 см от центра кольца.

27

28. На кольце с внутренним радиусом 80 см и внешним — 1м равно распределен заряд 10 нКл. Определите потенциал в центре кольца.

28

29. Металлический шар радиусом 5 см несет заряд Q = 10 нКл. Оп потенциал φ электростатического поля: 1) на поверхно шара; 2) на расстоянии a = 2 см от его поверхности. Постройте график зависимости φ(r).

29

30. Полый шар несет на себе равномерно распределенный заряд. Определить радиус шара, если потенциал в центре шара равен φ1 = 200 В, а в точке, лежащей от его центра на расстоянии r = 50 см, φ2 = 40 В.

30

31. Электростатическое поле создается положительным точечным зарядом. Определить числовое значение и направление градиента потенциала этого поля, если на расстоянии r = 10 см от заряда потенциал равен φ = 100 В.

31

32. Электростатическое поле создается бесконечной плоскостью, заряженной равномерно с поверхностной плотностью σ = 5 нКл/м 2 Определите числовое значение и направление градиента потенциала этого поля.

32

33. Электростатическое поле создается бесконечной прямой нитью заряженной равномерно с линейной плотностью τ = 50 пКл/см. Определите числовое значение и направление градиента потенциала в точке на расстоянии r = 0,5 м от нити.

33

34. Определить линейную плотность бесконечно длинной заряженной нити, если работа сил поля по перемещению заряда Q = 1 нКл с расстояния r1 = 5 см и r2 = 2 см в направлении, перпендикулярном нити, равна 50 мкДж.

34

35. Электростатическое поле создается положительно заряженной бесконечной нитью Протон, двигаясь от нити под действием поля вдоль линии напряженности с расстояния r1 = 1 см до r2 = 5 см, изменил свою скорость от 1 до 10 Мм/с Определите линейную плотность заряда нити.

35

36

37. Определить поверхностную плотность зарядов на пластинах плоского слюдяного (ε = 7) конденсатора, заряженного до разности потенциалов U = 200 В, если расстояние между его пластинами равно d = 0,5 мм.

37

38. Электростатическое поле создается равномерно заряженной сфе поверхностью радиусом R = 10 см с общим зарядом Q = 15 нКл. Определите разность потенциалов между двумя точками этого поля, лежащими на расстояниях r1 = 5 см и r2 = 15 см от поверхности сферы.

38

39. Электростатическое поле создается сферой радиусом R = 5 см, равномерно заряженной с поверхностной плотностью сигма = 1 нКл/м2. Определить разность потенциалов между двумя точками поля, лежащими на расстояниях r1 = 10 см и r2 = 15 см от центра сферы.

39

40. Электростатическое поле создается равномерно заряженным шаром радиусом R=1 м с общим зарядом Q = 50 нКл. Определите разность потенциалов для точек, лежащих от центра шара на расстояниях 1) r1 = 1,5 м и r2 = 2 м; 2) r1‘= 0,3 м и r2‘ = 0,8 м.

Читайте также:  шторы на балконную дверь с окном в зале

40

Ошибка в тексте? Выдели её мышкой и нажми orphus

Источник

Примеры решения задач

Пример 12.1. Три точечных заряда Q1=2нКл, Q2 =3нКл и Q3=-4нКл расположены в вершинах равностороннего треугольника со стороной длиной a=10см. Определите потенциальную энергию этой системы.

image065Решение:Потенциальная энергия системы зарядов равна алгебраической сумме энергий взаимодействия каждой из взаимодействующих пар зарядов, т.е.

где соответственно потенциальные энергии одного из зарядов, находящегося в поле другого заряда на расстоянии а от него, равны

image067; image069; image071(2)

Подставим формулы (2) в выражение (1), найдём искомую потенциальную энергию системы зарядов

image073

Пример 12.2. Определите потенциал в центре кольца с внутренним радиусом R1=30см и внешним R2=60см, если на нём равномерно распределён заряд q=5нКл.

Решение: Кольцо разобьём на концентрические бесконечно тонкие кольца внутренним радиусом r и внешним – (r+dr).

Площадь рассматриваемого тонкого кольца (см.рисунок) dS=2πrdr.

image075Потенциал в центре кольца, создаваемый бесконечно тонким кольцом,

image077

где – поверхностная плотность заряда.

Для определения потенциала в центре кольца следует арифметически сложить dφ от всех бесконечно тонких колец. Тогда

image079

image081

Пример 12.3. Два точечных одноименных заряда (q1=2нКл и q2=5нКл) находятся в вакууме на расстоянии r1= 20см. Определите работу А, которую надо совершить, чтобы сблизить их до расстояния r2=5см.

Решение: Работа, совершаемая силами электростатического поля при перемещении заряда Q из точки поля, имеющей потенциал φ1, в точку с потенциалом φ2.

При сближении одноимённых зарядов работу совершают внешние силы, поэтому работа этих сил равна по модулю, но противоположна по знаку работе кулоновских сил:

Потенциалы точек 1 и 2 электростатического поля

image083; image085(2)

Подставив формулы (2) в выражение (1), найдём искомую работу, которую надо совершить, чтобы сблизить заряды,

image087

Пример 12.4. Электростатическое поле создаётся положительно заряженной бесконечной нитью. Протон, двигаясь под действием электростатического поля вдоль линии напряжённости от нити с расстояния r1=2см до r2=10см, изменил свою скорость от υ1=1Мм/с до υ2=5Мм/с. Определите линейную плотность τ заряда нити..

Решение: Работа, совершаемая силами электростатического поля при перемещении протона из точки поля с потенциалом φ1 в точку с потенциалом φ2 идёт на увеличение кинетической энергии протона

В случае нити электростатическое поле обладает осевой симметрией, поэтому

image089или dφ=-Edr,

тогда разность потенциалов между двумя точками, находящимися на расстоянии r1 и r2 от нити,

image091

(учли, что напряжённость поля, создаваемого равномерно заряженной бесконечной нитью, image093).

Подставив выражение (2) в формулу (1) и учитывая, что image095, получим

image097

Откуда искомая линейная плотность заряда нити

image099

Решение: 1) Разность потенциалов между двумя точками, лежащими на расстоянии r1 и r2 от центра шара.

image101(1)

где image103— напряжённость поля, создаваемого равномерно заряженным с объёмной плотностью ρ шаром, в любой точке, лежащей вне шара на расстоянии r от его центра.

Подставив это выражение в формулу (1) и проинтегрировав, получим искомую разность потенциалов

image105

2) Разность потенциалов между двумя точками, лежащими на расстоянии r3 и r4 от центра шара,

image107(2)

где image109— напряжённость поля, создаваемого равномерно заряженным с объёмной плотностью ρ шаром, в любой точке, лежащей внутри шара на расстоянии r от его центра.

Подставив это выражение в формулу (2) и проинтегрировав, получим искомую разность потенциалов

Источник

Электростатическое поле создается положительно заряженной бесконечной нитью

tr c w

Вычисление электрических полей с помощью теоремы Остроградского –Гаусса back go

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

071

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность 005во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность 005будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

072
Рис. 2.11 Рис. 2.12

Тогда 073

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

076

Внутри поверхности заключен заряд 077. Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости 080

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей 081.

Тогда внутри плоскостей

Вне плоскостей напряженность поля 083

085 084

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. 089, то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью 091, где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

092

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров 093для боковой поверхности 094т.е. зависит от расстояния r.

Следовательно, поток вектора 005через рассматриваемую поверхность, равен 095

При 096на поверхности будет заряд 097По теореме Остроградского-Гаусса 098, отсюда

Если 100 101, т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

102

Если уменьшать радиус цилиндра R (при 103), то можно вблизи поверхности получить поле с очень большой напряженностью и, при 104, получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

106

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

107

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, 005– в любой точке проходит через центр шара. 108,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если 096то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

откуда поле вне сферы:

Внутри сферы, при 100поле будет равно нулю, т.к. там нет зарядов: 111

113 112

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при 100сферическая поверхность будет содержать в себе заряд, равный

115

где ρ – объемная плотность заряда, равная: 116; 117– объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара 120

Источник

Оцените статью
Мой дом
Adblock
detector