электростатическое поле внутри и снаружи проводника

Учебники

Журнал «Квант»

Общие

Чивилёв В.И. Проводники в электростатическом поле //Квант. — 1988. — № 1. — С. 38-39.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Содержание

Тот факт, что в природе существуют проводники, обогащает окружающий нас мир разнообразными электрическими явлениями, среди которых есть и далеко небезопасные. Проводники занимают важное место при изучении электромагнетизма.

Рассмотрим подробно случай, когда заряженный неподвижный проводник находится во внешнем электростатическом поле (созданном посторонними неподвижными зарядами). В проводнике рано или поздно все заряды перестанут перемещаться, и наступит равновесие (так как в противном случае мы получили бы вечный двигатель в результате непрерывного выделения тепла при движении зарядов). Для такого заряженного и помещенного во внешнее электростатическое поле проводника будут справедливы утверждения, приведенные ниже.

1. Поле внутри проводника

В любой точке внутри проводника напряженность электрического поля равна нулю. Действительно, при невыполнении этого условия свободные заряды в проводнике под действием сил поля пришли бы в движение, и равновесие было бы нарушено.

2. Распределение заряда в проводнике

Для того чтобы ответить на вопрос о распределении заряда в проводнике, нам надо уточнить некоторые свойства силовых линий электростатического поля. Напомним, что силовая линия электрического поля (в том числе и электростатического) — это воображаемая линия в пространстве, проведенная так, чтобы касательная к ней в каждой точке совпадала с вектором напряженности электрического поля в этой точке. Опыт изучения электростатических полей дает основание заключить, что силовые линии этих полей непрерывны и не замкнуты, они могут начинаться только на положительных зарядах и оканчиваться только на отрицательных и не могут начинаться (заканчиваться) в точке пространства, где нет зарядов. При графическом изображении поля некоторой системы зарядов число силовых линий, начинающихся или заканчивающихся на каком-либо заряде, пропорционально модулю этого заряда. Отсюда следует, что из любого заряда обязательно выходят (или входят в него) силовые линии.

После сказанного о силовых линиях возвратимся к вопросу о распределении заряда в проводнике. Выделим мысленно произвольный достаточно малый объем ΔV внутри проводника (рис. 1). Предположим, что этот объем имеет заряд (для определенности, положительный). Тогда из выделенного объема будут выходить силовые линии, т. е. вблизи него будет существовать электрическое поле. Но поля внутри проводника нет. Поэтому выделенный объем должен быть нейтрален. А поскольку этот объем взят нами в произвольном месте внутри проводника, то можно утверждать, что вся «внутренность» проводника нейтральна и, следовательно, весь заряд проводника находится на его поверхности.

Img Kvant 1988 01 001

3. Поле снаружи проводника вблизи его поверхности

Вектор напряженности электростатического поля в любой точке снаружи проводника вблизи его поверхности направлен перпендикулярно поверхности, что другими словами можно сказать так: силовые линии поля входят в проводник и выходят из него под прямым углом к поверхности проводника. В противном случае существовала бы составляющая вектора напряженности поля вдоль поверхности проводника, на свободные заряды на поверхности проводника действовала бы сила, имеющая составляющую вдоль поверхности. В результате этого по поверхности проводника стали бы двигаться заряды, что нарушило бы равновесие.

4. Распределение потенциала в проводнике

Покажем, что разность потенциалов любых двух точек проводника, включая точки поверхности, равна нулю. Пусть есть произвольные точки М и К внутри проводника. Перенесем мысленно из точки М в точку К пробный заряд q по некоторой траектории МВК, лежащей внутри проводника (рис. 2). Силы поля не совершат работы над перемещаемым зарядом q, так как поля внутри проводника нет. Поэтому разность потенциалов φMφK = 0. Если точки М и К, одна или обе, лежат на поверхности проводника, то доказательство того, что разность потенциалов между ними равна нулю, аналогично.

Img Kvant 1988 01 002

Так как разность потенциалов любых двух точек проводника равна нулю, то потенциал всех точек проводника, включая точки поверхности, один и тот же. Поэтому говорят о потенциале проводника, не указывая конкретной его точки. Поскольку все точки поверхности проводника имеют одинаковый потенциал, поверхность проводника будет эквипотенциальной поверхностью.

5. Полость внутри проводника

Удалим из внутренней области проводника часть вещества. Так как удаляемое вещество нейтрально, то следует ожидать, что электростатическое поле во всех точках вне проводника, внутри проводника и в возникшей полости не изменится. И это будет действительно так, причем на внутренней поверхности проводника (на поверхности полости) зарядов не будет. Весь заряд проводника сосредоточится на внешней поверхности проводника, а наличие полости внутри проводника не скажется на распределении заряда по внешней поверхности. Поле в полости и в проводнике будет отсутствовать. Потенциал всех точек проводника и полости окажется одинаков.

Короче говоря, полый проводник, имеющий заряд и помещенный во внешнее электростатическое поле, ведет себя так же, как и соответствующий сплошной. Доказательство этого утверждения приводить не будем, но заметим, что оно подтверждено многочисленными опытами, проведенными еще Г. Кавендишем (1731-1810) в конце XVIII века и М. Фарадеем (1791-1867) в начале XIX века.

Читайте также:  картинки для рисования на стене

Источник

Как сказал.

Все мы гении. Но если вы будете судить рыбу по её способности взбираться на дерево, она проживёт всю жизнь, считая себя дурой.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

newСписок лекций по физике за 1,2 семестр

Урок 26. Лекция 26. Проводники и диэлектрики в электрическом поле. Конденсаторы.

Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю. Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле. Полное электрическое поле lk28f 4складывается из внешнего поля lk31f 2и внутреннего поля lk31f 3создаваемого заряженными частицами вещества.

Рассмотрим подробнее эти классы веществ.

Проводники в электрическом поле.

Проводниками называют вещества, проводящие электрический ток.

Типичными проводниками являются металлы.

Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.

Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами.

Индукционные заряды создают свое собственное поле lk31f 3, которое компенсирует внешнее поле lk31f 2во всем объеме проводника:

lk31f 4(внутри проводника).

Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

Диэлектрики в электрическом поле.

Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

При внесении диэлектрика во внешнее электрическое поле lk31f 2в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

Связанные заряды создают электрическое поле lk31f 3, которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля lk31f 2. Этот процесс называется поляризацией диэлектрика.

Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.

В результате полное электрическое поле внутри диэлектрика lk31f 6оказывается по модулю меньше внешнего поля lk31f 2.

Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме lk31f 2к модулю напряженности полного поля в однородном диэлектрике lk28f 4, называется диэлектрической проницаемостью вещества.

lk31f 7

Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).

При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов lk31f 3и полное поле lk28f 4могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле lk28f 4в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем lk31f 2строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:

Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля lk28f 4, создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

lk31f 8lk31f 9

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.

Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

lk32f 1

В системе СИ единица электроемкости называется фарад [Ф]: lk32f 2

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – плоский конденсаторсистема из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

Читайте также:  аптекарский огород рестораны с верандой

lk32f 5

Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

lk32f 6

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

lk32f 7— сферический конденсатор

lk32f 8— цилиндрический конденсатор

Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.

1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.

Таким образом, при параллельном соединении электроемкости складываются.

2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки

Заряды обоих конденсаторов одинаковы q1 = q2 = q, напряжения на них равны lk32f 12и lk32f 13

Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2.

Следовательно, lk32f 14или lk32f 15

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Т.е. в случае n конденсаторов одинаковой емкости С емкость батареи

при параллельном соединении Собщ = nС

при последовательном соединении Собщ = С/n

Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую.При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов

lk32f 17

при переносе каждой порции Δq внешние силы должны совершить работу

lk32f 18

Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:

lk32f 19

lk32f 20

Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.

Источник

Проводники в электрическом поле

В проводниках — в металлах и электролитах, есть носители заряда. В электролитах это ионы, в металлах — электроны. Эти электрически заряженные частицы способны под действием внешнего электростатического поля перемещаться по всему объему проводника. Электроны проводимости в металлах, возникающие при конденсации паров металла, благодаря обобществлению валентных электронов, являются в металлах носителями заряда.

1470740861 23

Напряженность и потенциал электрического поля в проводнике

В отсутствие внешнего электрического поля металлический проводник электрически нейтрален, поскольку внутри него электростатическое поле полностью компенсировано отрицательными и положительными зарядами внутри его объема.

Если внести металлический проводник во внешнее электростатическое поле, то электроны проводимости внутри проводника начнут перераспределяться, они придут в движение, и переместятся так, что всюду внутри объема проводника поле положительных ионов и поле электронов проводимости скомпенсирует в конце концов внешнее электростатическое поле.

Таким образом, внутри проводника, находящегося во внешнем электростатическом поле, в любой его точке, напряженность электрического поля E будет равна нулю. Разность потенциалов внутри проводника также будет равна нулю, то есть потенциал внутри станет постоянным. То есть видим, что диэлектрическая проницаемость металла стремится к бесконечности.

1470740855 1

Но на поверхности проводника напряженность E будет направлена по нормали к этой поверхности, ибо в противном случае, составляющая напряженности, направленная по касательной к поверхности проводника привела бы к перемещению зарядов по проводнику, что противоречило бы реальному, статическому из распределению. Снаружи, вне проводника, электрическое поле есть, значит есть и вектор E, перпендикулярный поверхности.

В итоге, в установившемся состоянии, помещенный во внешнее электрическое поле металлический проводник будет иметь на своей поверхности заряд противоположного знака, а процесс этого установления длится наносекунды.

На том принципе, что внутрь проводника внешнее электрическое поле не проникает, основано электростатическое экранирование. Напряженность внешнего электрического поля Е компенсируется нормальным (перпендикулярным) электрическим полем на поверхности проводника En, а напряженность по касательной Eт равна нулю. Получается, что проводник в этой ситуации полностью эквипотенциален.

Согласно теореме Остроградского-Гаусса, суммарный заряд q внутри объема проводника равен нулю, поскольку E = 0.

Определение напряженности электрического поля вблизи проводника

1470740890 2

Если выделить на поверхности проводника площадку dS, и построить на ней цилиндр с перпендикулярными к поверхности образующими высотой dl, то будем иметь dS’=dS»=dS. Вектор напряженности электрического поля E перпендикулярен к поверхности, как и вектор электрического смещения D, пропорциональный E, следовательно поток D через боковую поверхность цилиндра будет нулевым.

Поток вектора электрического смещения Фd через dS» тоже равен нулю, поскольку dS» расположена внутри проводника, а там E = 0, значит и D = 0. Следовательно dФd сквозь замкнутую поверхность равен D через dS’, dФd = Dn*dS. С другой стороны, по теореме Остроградского-Гаусса: dФd = dq = σdS, где σ — поверхностная плотность зарядов на dS. Из равенства правых частей уравнений следует, что Dn = σ, и тогда En = Dn/εε0 = σ/εε0.

Вывод: Напряженность электрического поля вблизи поверхности заряженного проводника прямопропорциональна поверхностной плотности зарядов.

Экспериментальная проверка распределения заряда на проводнике

Читайте также:  чем отделать стены в прихожей в квартире кроме обоев своими руками недорого фото

1470740857 3

В местах с разной напряженностью электрического поля бумажные лепестки будут расходиться по-разному. На поверхности меньшего радиуса кривизны (1) — максимально, на боковой поверхности (2) — одинаково, здесь q = const, то есть заряд распределен равномерно.

Электрометр — прибор для измерения потенциала и заряда проводника, показал бы, что на острие заряд максимальный, на боковой поверхности — меньше, а заряд с внутренней поверхности (3) — нулевой. Напряженность электрического поля на острие заряженного проводника наибольшая.

1470740932 4

Поскольку на остриях напряженность электрического поля E велика, это приводит к утечке заряда и к ионизации воздуха, по этой причине, данное явление является зачастую нежелательным. Ионы уносят электрический заряд с проводника, возникает эффект ионного ветра. Наглядные демонстрации отражающие этот эффект: сдувание пламени свечи и колесо Франклина. Это хорошая основа для построения электростатического двигателя.

1470740928 5

Если металлический заряженный шарик привести в соприкосновение с поверхностью другого проводника, то от шарика заряд частично передастся проводнику, и потенциалы этого проводника и шарика выровняются. Если же шарик привести в соприкосновение с внутренней поверхностью полого проводника, то весь заряд с шарика распределится полностью только по внешней поверхности полого проводника.

Так произойдет независимо от того, больше потенциал шарика чем у полого проводника или меньше. Даже если потенциал шарика до соприкосновения меньше, чем потенциал полого проводника, заряд с шарика перетечет полностью, поскольку при перемещении шарика в полость, экспериментатором будет совершена работа по преодолению сил отталкивания, то есть потенциал шарика будет расти, потенциальная энергия заряда возрастет.

В итоге, заряд перетечет от большего потенциала к меньшему. Если переносить теперь к полому проводнику следующую порцию заряда на шарике, то потребуется еще большая работа. В данном эксперименте наглядно отражается то, что потенциал является энергетической характеристикой.

Роберт Ван Де Грааф

1470740863 6

Роберт Ван Де Грааф (1901 — 1967) — гениальный американский физик. В 1922 году Роберт окончил университет Алабамы, позже, с 1929 по 1931 год, работал в Принстонском университете, а с 1931 по 1960 — в Массачусетском технологическом институте. Ему принадлежит ряд научных исследований по ядерной и ускорительной технике, идея и реализация тандемного ускорителя ионов, а также изобретение высоковольтного электростатического генератора, генератора Ван Де Граафа.

1470740930 7

Принцип работы генератора Ван Де Граафа несколько напоминает эксперимент с перенесением заряда шариком в полую сферу, как в описанном выше эксперименте, но здесь процесс автоматизирован.

Лента транспортера заряжается положительно при помощи высоковольтного источника постоянного напряжения, затем заряд с движением ленты переносится внутрь большой металлической сферы, где острием же передается ей, и распределяется по внешней сферической поверхности. Так получают потенциалы относительно земли в миллионы вольт.

В настоящее время существуют ускорительные генераторы Ван Де Граафа, например в НИИ ядерной физики в Томске есть ЭСГ такого типа на миллион вольт, который установлен в отдельной башне.

Электрическая емкость и конденсаторы

Как упоминалось выше, при сообщении проводнику заряда, на его поверхности появится некоторый потенциал φ. И у разных проводников этот самый потенциал будет различаться, даже если количество сообщаемого проводникам заряда будет одинаковым. В зависимости от формы и размеров проводника, потенциал может быть разным, однако так или иначе, он будет пропорционален заряду, а заряд будет пропорционален потенциалу.

1470740929 8

Коэффициент пропорциональности называется электрической емкостью, электроемкостью, или просто емкостью (когда это со всей очевидностью подразумевается контекстом).

1470740861 9

Электроемкостью называется физическая величина, равная численно заряду, который нужно сообщить проводнику, чтобы изменить его потенциал на единицу. В системе СИ электроемкость измеряется в фарадах (сейчас «фарад», раньше было «фарада»), и 1Ф = 1Кл/1В. Так, потенциал поверхности сферического проводника (шара) равен φш = q/4πεε0R, значит Сш = 4πεε0R.

Если принять R равным радиусу Земли, то электроемкость Земли, как уединенного проводника получится равной 700 мкф. Важно! Это электроемкость Земли, как уединенного проводника!

Если к одному проводнику поднести другой проводник, то из-за явления электростатической индукции электроемкость проводника возрастет. Так, два проводника, расположенные близко друг к другу, и представляющие собой обкладки, называются конденсатором.

Когда электростатическое поле сосредоточено между обкладками конденсатора, то есть внутри него, внешние тела не оказывают влияния на его электроемкость.

Конденсаторы бывают плоскими, цилиндрическими и сферическими. Поскольку электрическое поле сосредоточено внутри, между обкладками конденсатора, линии электрического смещения начинаясь на положительно заряженной обкладке конденсатора, заканчиваются на отрицательно заряженной его обкладке. Следовательно, заряды обкладок противоположны по знаку, но по величине одинаковы. И емкость конденсатора С = q/(φ1-φ2) = q/U.

1470740853 10

Формула емкости плоского конденсатора (для примера)

Поскольку напряженность электрического поля E между обкладками равна E = σ/εε0 = q/εε0S, а U = Ed, тогда C = q/U = q/(qd/εε0S) = εε0S/d.

1470740883 11

S – площадь обкладок; q – заряд конденсатора; σ — плотность заряда; ε – диэлектрическая проницаемость диэлектрика между обкладками; ε0 – диэлектрическая проницаемость вакуума.

1470740902 12

Энергия заряженного конденсатора

Замыкая обкладки заряженного конденсатора между собой проволочным проводником, можно наблюдать ток, который может быть такой силы, что мгновенно расплавит проволоку. Очевидно, конденсатор запасает энергию. Какова эта энергия количественно?

1470741035 13

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Оцените статью
Мой дом
Adblock
detector