это устройство помогает в нужный момент воспламениться топливной смеси поле чудес

LSPI.Преждевременное воспламенение смеси в двигателе.Мнение «специалистов».

4PTZwSh4jVhQUWi3BnCCkVH 4i8 100

XEAAAgKteOA 960

Эта проблема дала о себе знать совсем недавно (что инетересно, ранее ее не существовало!), но уже успела наделать много шума в этих ваших интернетах Сети, породив жаркие споры среди масляных профессиАналов автомобилистов и диванных экспертов о причинах ее возникновения и способов устранения. Суть проблемы заключается в следующем: в результате особого вида детонации, которая может возникнуть, а может и не возникнуть из-за слишком раннего зажигания, происходит разлом поршней практически на всех турбированных двигателях типа GDI-Turbo, TFSI с непосредственным впрыском топлива.

Хотя учитывая почтенный возраст и пробеги многих GDI и D4 двигателей, у меня возникают жуткие сомнения…но продолжим читать, что же нам наговорят специалисты…

Low Speed Pre Ignition (LSPI), что в переводе на русский означает «преждевременное воспламенение смеси в цилиндре». Уникальность этого явления заключается в том, что разрушение поршней происходит, когда двигатель работает, исключительно на небольших нагрузках, например при движении машины по трассе.
Чтобы выяснить причину проблемы, специалисты провели целый ряд испытаний. В результате выяснилось, что причиной уничтожения поршней стало ВНЕЗАПНО моторное масло. Его пленка просачивается под поршневые кольца (современные допуски сборки двигателей — влезло, ИТАК СОЙДЕТ), а высокие температура и давление порождают детонацию масляно-воздушной смеси.
Но все же давайте разберемся в этом вопросе подробнее и выясним, как избежать поломки?

Не будем углубляться в другие детали работы ДВС, а рассмотрим лишь тот момент, который нам интересен на данном этапе. И касается он работы поршня.

Его начальное положение — в верхней мертвой точке. Именно в этот момент происходит открытие впускного клапана. Поршень начинает движение вниз, засасывая в цилиндр крошечную смесь бензина, разбрызганную форсункой, смешанного с воздухом. Это такт впуска.

Поршень вновь достигает дна, открывается выпускной клапан. Поршень уже по инерции начинает движение вверх. В этот момент через выпускные клапаны из цилиндра выходит отработанная смесь топлива и воздуха. Затем новый цикл и т.д.

Таковы вкратце основы работы двигателя. Но, чтобы нам разобраться в сути проблемы, следует знать, что каждое воспламенение воздушно-топливной массы должно всегда происходить в строго определенный интервал времени, рассчитанный микрокомпьютером. Это всего лишь миллисекунды, но они очень важны для бесперебойной работы двигателя.

Как уже было сказано выше, воспламеняет смесь свеча зажигания. Она же следит и за интервалом воспламенения. А теперь представьте, что в синхронизации воспламенения топлива происходит сбой. Что-то пошло не так, двигатель начинает разогреваться, горючее воспламеняется раньше, чем эту функцию выполнит свеча зажигания, возникают резкие самопроизвольные и не контролируемые скачки давления в камере сгорания. При таких условиях топливо в буквальном смысле сгорает взрывным методом. Происходит детонация, которая наносит всем частям цилиндровой группы серьезный урон.

Но не стоит пугаться. Детонация в двигателях автомобиля — это настолько изученное явление, что беспокоиться о ней не стоит. К тому же, двигатели современных автомобилей оснащены системами, способными предотвратить появление данного явления в виде датчиков детонации, только появились признаки, ситсема автоматически обогатит смесь и откатит углы зажигания, устранив детонацию на корню. Но у вашего автомобиля, ВНЕЗАПНО вдруг откуда не возьмись появился в рот компот другой злейший враг — LSPI. И вот его следует бояться и опасаться.

Прежде всего, следует запомнить, что этот враг коварен и опасен. Он действительно может превратить ЦПГ вашего двигателя в груду искареженного металла. И враг этот – LSPI или преждевременное воспламенение смеси в цилиндре.

Здесь нужно пояснить, что Low Speed Pre Ignition и детонация — это два разных явления, вызванные разными причинами. По мнению Скотта Линдхольма, эксперта по глобальному применению продуктов смазочных материалов Shell, «детонация может контролироваться при помощи топливного октанового числа и расчетом появления искры». Другое дело — LSPI. Природа происхождения данного явления, несмотря на все старания инженеров, «не очень хорошо понята, не изучена и может произойти спонтанно».

Ясно пока одно: и типичная детонация, и LSPI возникают из-за сбоя интервала воспламенения смеси бензина в цилиндрах. Но детонация появляется, когда двигатель работает на высоких оборотах и под большой нагрузкой, а LSPI может случиться при минимальной нагрузке и при очень низких оборотах. Замечено, что особенно восприимчивы к данному явлению турбированные двигатели с непосредственным впрыском топлива (GDI-Turbo, TFSI), которыми в последнее время автопроизводители предпочитают оснащать автомобили.

Что происходит с двигателем при LSPI?

Если говорить о последствиях преждевременного воспламенения, то внутренности двигателя вашего автомобиля за довольно короткий промежуток времени будут переработаны в металлолом.

— Видишь суслика?
— Нет.
— И я не вижу. А он есть.

Что становится причиной преждевременного воспламенения смеси в цилиндре?

Сколько автомобилей уже пали жертвами LSPI, сказать сегодня трудно, поскольку такой статистики никто не ведет и автоморбили чинятся по гарантии. Но если бы эта проблема была единичной и рядовой, автопроизводители вряд ли обратили бы на нее внимание. А между тем, проблемой преждевременного воспламенения смеси в цилиндре занимаются уже несколько десятков маркетологов команд специалистов.

Скотт Линдхольм возглавляет команду Shell. Его группа пришла к выводу, что причиной явления LSPI становятся «небольшие [горячие] масляные брызги, которые разлетаются с поршневых колец при развороте верхнего кольца, предоставляя возможность появления второго источника зажигания, кроме искры от свечи зажигания… Струя топлива при впрыске ударяет в стенку цилиндра, отбивая небольшие капли смеси топлива с маслом, что провоцирует раннее воспламенение. Также на это влияют продукты износа в камере сгорания и ухудшение свойств моторного масла, повышение кислотного числа».

Иными словами, предположения специалистов Shell сводятся к следующему: в цилиндры могут попадать посторонние капли очень горячего моторного масла, которые и инициируют преждевременное воспламенение топлива. Таким образом возникает эффект LSPI.

Как избежать спецэффектов LSPI?

Несмотря на то, что специалисты установили причину возникновения LSPI только теоретически, им известны некоторые условия, при которых появляется это явление. Инженеры рекомендовали автовладельцам несколько способов, как избежать разрушительных последствий LSPI.

Способ 1. Перепрограммировать компьютерную систему управления, отвечающие за управление двигателем. Обычно осуществляется при отзывной компании или плановом ТО.

Линдхольм уверяет, что применил данный способ на собственном авто, оснащенном двигателем TGDI. «Калибровки двигателя очень сложны и дороги, но у производителей оборудования есть полное понимание того, какие условия могут вызвать повреждение двигателя, а какие помогут этого избежать», — говорит он.

«Этот вариант действительно решает проблему, — добавляет эксперт, — но придется смириться с потерей топливной эффективности и продуктивности работы мотора».

Кстати, Ford в свое время уже провел по всему миру (Россия не стала исключением) отзывную кампанию. По ней была перекалибрована прошивка программного обеспечения двигателей выпускаемых концерном авто.

Способ 2 куда менее затратный (ну-ну…ага ага…) для автовладельцев, но на его применение потребуется время. Специалисты предлагают приобретать исключительно специальное моторное масло с самыми последними допусками, красивыми цифрами, буквами и качественной полиграфией на канистре для своего «железного коня». В его рецептуре должно значиться, что данный продукт минимизирует вероятность преждевременного воспламенения топлива LSPI.

Скотт Линдхольм утверждает: «Рецептура моторного масла может помочь снизить тенденции к LSPI». И над этим сегодня идет тяжелая работа. Такое масло, по его словам, будет способно устранить или, по крайней мере, уменьшить причину возникновения феномена Low Speed Pre Ignition. На это уйдет год-два-три.

Тем же путем — разработкой новой рецептуры моторных масел — идут в настоящее время несколько компаний из Японии, Соединенных Штатов и Германии.

P.S. Стоит отметить, что феномен Low Speed Pre Ignition до конца не изучен и не задокументирован. И по этому поводу все еще идут жаркие дискуссии как в научном мире, так и среди диванных аналитеков, маслянных профессиАналов специалистов-практиков. Мнений много, но ясно одно: причиной непроизвольных вспышек в камере сгорания, вопреки расхожему мнению, также является воспламенение разжиженного топливом масла, которое попадает в камеру сгорания через систему принудительной вентиляции картера из–за потери герметичности колец, а также, в большинстве случаев, через турбину.

Читайте также:  кличка для собаки женского пола

Разжижение масла приводит к резкому снижению температуры его самовоспламенения, что, в конечном итоге, приводит к неконтролируемым, произвольным вспышкам в камере сгорания при вполне нормальных рабочих температурах.

Таким образом, специалисты, наряду со всеми рекомендациями, настоятельно рекомендуют применять технологии, позволяющие ограничить попадание масла в камеру сгорания и поддерживать работоспособность масляной и топливной системы, а также исправности системы принудительной вентиляции картера (PCV).

К сожалению, так и не удалось найти реальных фотографий поршней и колец, а также двигателей, реально сломанных LSPI, а не детонацией, разрушением свечей или отрывом тарелки клапанов, поэтому иллюстраций к данной статье не будет. Все сводится к туманным пространным рассуждениям и некоторым предположениям…но самое главное что можно вынести — не забывайте нести ваши денежки исключительно монополистам допусков масляным гигантам и покупайте самые последние и самые дорогие масла, авось, по их мнению, двигатель вашего железного друга переживет позорные почтенные 100-150т.км. пробега до капитального ремонта или ухода в металломом на пенсию…Но вопрос а был ли мальчик о реальном существовании LSPI остается открытым…

Источник

Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

cover

Несмотря на то что в автошколах немало внимания уделяется вопросам технического устройства автомобиля, полученных знаний хватает далеко не всем новичкам. Данная книга призвана восполнить этот пробел. Она поможет вам в короткие сроки разобраться в том, что представляет собой современный автомобиль, из каких узлов и агрегатов он состоит, почему при наличии определенных неисправностей машину нельзя эксплуатировать и т. д. Легкий и доступный стиль изложения и большое количество цветных иллюстраций способствуют быстрому усвоению предлагаемого материала даже теми, кто до настоящего момента никогда не имел дела с автомобилем. Книга рекомендована журналом «Автомир» и интернет-порталом www.avtotut.ru.

Оглавление

Приведённый ознакомительный фрагмент книги Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей предоставлен нашим книжным партнёром — компанией ЛитРес.

2. Двигатель внутреннего сгорания (ДВС)

Общее устройство и работа ДВС

Почти на всех современных автомобилях в качестве силовой установки применяется двигатель внутреннего сгорания (ДВС) (рис. 2.1).

Существуют еще электромобили, но их мы рассматривать не будем.

i 014

Рис. 2.1. Внешний вид двигателя внутреннего сгорания

В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.

При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку будет воздействовать огромное давление, которое будет двигать стенку.

В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.

ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипношатунного и газораспределительного, а также из следующих систем:

♦ выпуска отработавших газов;

Основные детали ДВС:

♦ головка блока цилиндров;

♦ распределительный вал с кулачками;

Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема — с восьмью и даже двенадцатью цилиндрами (рис. 2.2). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива.

i 015

Рис. 2.2. Схемы расположения цилиндров в двигателях различной компоновки:

а — четырехцилиндровые; б — шестицилиндровые; в — двенадцатицилиндровые (α — угол развала)

Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы — стакан, состоящий из головки и юбки (рис. 2.3). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 2.4).

i 016

Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.

i 017

Рис. 2.4. Поршень с шатуном:

1 — шатун в сборе; 2 — крышка шатуна; 3 — вкладыш шатуна; 4 — гайка болта; 5 — болт крышки шатуна; 6 — шатун; 7 — втулка шатуна; 8 — стопорные кольца; 9 — палец поршня; 10 — поршень; 11 — маслосъемное кольцо; 12, 13 — компрессионные кольца

Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.5).

В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.

Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 2.3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 2.3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.

i 018

Рис. 2.5. Коленчатый вал с маховиком:

1 — коленчатый вал; 2 — вкладыш шатунного подшипника; 3 — упорные полукольца; 4 — маховик; 5 — шайба болтов крепления маховика; 6 — вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 — вкладыш центрального (третьего) подшипника

Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ — это камера сгорания.

А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра.

В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.

Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливо-воздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных — 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.

Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт.

Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливо-воздушной смеси.

В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 2.6), в дизельных — от сжатия.

i 019

Рис. 2.6. Свеча зажигания

При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.

Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 2.5). Когда двигатель работает, вал с маховиком вращаются.

А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.

Повторим, первое действие — попадание внутрь цилиндра (в пространство над поршнем) топливо-воздушной смеси, которую приготовил карбюратор или инжектор. Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливо-воздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан — это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.

Читайте также:  шахматное поле с буквами и цифрами

При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его.

Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 2.7).

Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на пол-оборота.

После того как топливо-воздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.

Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 2.7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное пространство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °C.

Источник

Для моторов с наддувом и непосредственным впрыском нужно особое топливо. Или это маркетинг? Разбираемся с bp

bp 404

Споры на тему автомобильного топлива начались десятки лет назад и до сих пор нисколько не потеряли своего азарта. Меняется разве что тематика обсуждения: если в советские годы обсуждались способы перевода мотора на более низкооктановый и дешевый бензин, то сегодня, наоборот, только и разговоров о том, что лучше заливать 95 или 98, а то и 100 вместо 92. Мол, и расход ниже, и мотору от этого только лучше. Давайте вспомним, как и почему двигателестроение пришло к высокооктановому топливу, зачем оно необходимо и действительно ли современные моторы требуют «современного бензина».

Чем современные двигатели отличаются от старых?

Эволюция двигателей внутреннего сгорания – тема глубокая и многогранная, но мы не будем даже пытаться объять необъятное. Давайте сразу отметим ключевые факты о моторах, которые многие сегодня воспринимают как должное. Прежде всего, современные автомобили демонстрируют невероятные мощностные и динамические показатели при скромном литраже двигателей. Что еще важней, они вышли на новый уровень топливной экономичности и экологичности выхлопа. Все это стало возможным благодаря применению передовых инженерных решений – сложнейших систем прямого впрыска топлива и рециркуляции отработанных газов, многоступенчатых катализаторов и сажевых фильтров, и, конечно же, расширению полномочий управляющей электроники, которая посредством многочисленных датчиков контролирует все этапы формирования и сгорания воздушно-топливной смеси. Однако современный двигатель, как и любая другая высокоточная механика, предъявляет особые требования к качеству горюче-смазочных материалов и, в первую очередь, моторного топлива.

Что же заставляло производителей автомобильной техники совершенствовать свои двигатели? Как ни банально это прозвучит, в первую очередь – это ужесточение требований экологического законодательства, которое закреплено в Женевском Соглашении, впервые утвержденном в 1958 году. Кроме того, основные требования к выбросам вредных веществ автомобилями и двигателями установлены в Правилах ООН № 49 (грузовые автомобили и автобусы), №83 (легковые автомобили и легкие грузовики) и №96 (дизели сельскохозяйственных и лесных тракторов, внедорожных транспортных средств). Именно ужесточение требований к выбросам вредных веществ автотранспортных средств и двигателей побуждало производителей искать все более эффективные решения. Кардинально изменить ситуацию могла только оптимизация процесса сгорания топливовоздушной смеси. В частности, надо было заставить весь её объём воспламениться в максимально короткое время. А здесь была необходима высокая точность дозировки и точность момента впрыскивания. Сделать это можно было, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи.

Наглядный пример – то, как это реализовано в легковых турбодизелях, где сейчас практически повсеместно применяется система прямого впрыска типа common rail. Ее принципиальное отличие от других систем заключается в наличии топливного аккумулятора высокого давления, или как ее еще называют, топливная рампа. Дизельное топливо подается насосом под высоким давлением в эту рампу, а из нее направляется к форсункам. Такая схема обеспечивает массу преимуществ, включая отличное распыление топлива, равномерность подачи топлива вне зависимости от частоты вращения коленвала и высокоточное многократное дозирование в процессе рабочего цикла. А управляющая электроника позволяет регулировать давление и момент начала впрыска в очень широком диапазоне. Все это обеспечивает практически полное сгорание дизельного топлива в цилиндрах и, как следствие, высокую экономичность двигателя и низкую токсичность выхлопа.

bp 337

Быстродействие системы питания и точность дозировки топлива стали для инженеров-дизелистов ключевыми параметрами. Поэтому на двигателях последнего поколения электрогидравлические форсунки уступили место пьезоэлектрическим, время срабатывания которых составляет 0,1 мс – в 5 раз меньше, чем у предшественников. Кардинально выросло и давление: если в прежние времена рядные ТНВД выдавали не более 600 бар, то системы common rail третьего поколения с пьезофорсунками уже вышли на уровень 2500 бар.

Бензиновые моторы не отстают от дизельных: они тоже прошли долгий путь от карбюраторов до непосредственного впрыска. Здесь эта технология также не нова, но широкое распространение получила лишь в последние 20-30 лет, а сейчас становится все популярнее. Такая система питания дает те же преимущества: это и возможность точной настройки рабочих параметров, и «послойный» впрыск, когда топливо подается в цилиндр несколько раз за такт, и выигрыш в экономичности, и снижение вредных выбросов. Ну а оборотную сторону медали мы уже знаем: повышенные требования к качеству бензина, т. к. форсунки работают в условиях высоких температур и давления и быстро закоксовываются.

Ведь, по сути, форсунка представляет собой достаточно простой электромагнитный клапан игольчатого типа, что предопределяет загрязнение как основную причину его выхода из строя. Форсунка не очень боится механического засорения – фильтры, установленные в топливной магистрали и самой форсунке, успешно отсеивают частицы размером свыше 20 микрон. Гораздо большую опасность представляет загрязнение продуктами сгорания топлива, которые со временем перекрывают распылительные каналы и нарушают нормальную работу игольчатого клапана. На дизельных и бензиновых моторах с прямым впрыском топлива ситуация усугубляется тем, что здесь распылители форсунок выходят в камеру сгорания, а значит, нагреваются они еще быстрее. И нагар формируется уже не только внутри, но и на поверхности распылителей.

bp 201

Еще одна технология, помимо прямого впрыска, позволившая вывести моторы на новый уровень мощности и экологичности – это наддув. О том, что такое наддув, знают все: это принудительная подача в цилиндр под давлением большего количества воздуха, позволяющая сжечь за один такт большее количество топлива и тем самым повысить мощность мотора при том же рабочем объеме. Зародившись в прошлом веке как инструмент повышения мощности в судовых дизелях, наддув доказал свою эффективность в автоспорте, а затем прочно закрепился в двигателестроении как одна из ключевых технологий. При этом наддув стимулировал развитие не только двигателей, но и топлива для них. Ведь рост давления в камере сгорания в бензиновых двигателях приводит в том числе и к повышению риска детонации, так что современные турбированные двигатели, как правило, требуют бензина с октановым числом не ниже 95.

Итак, наддув, непосредственный впрыск и высокая степень сжатия – это ключевые особенности современных двигателей.

Изменилось ли топливо так же сильно, как двигатели?

Разумеется, за эти десятилетия эволюционировали не только двигатели, но и топливо. Даже если вспомнить не столь далекое прошлое, то как бензин, так и дизельное топливо были иными. Во-первых, топливо стало другим по компонентному составу. Модернизация большинства НПЗ России, проведенная в последние два десятилетия, позволила как существенно увеличить глубину переработки нефти, так и улучшить качество производимых компонентов, в т. ч. и высокооктановых. В состав бензина теперь повсеместно вовлекаются продукты установок сернокислотного алкилирования, низкотемпературной изомеризации, каталитического и ароматического риформинга, каталитического крекинга (кстати, бензины каталитического и ароматического риформинга и сернокислотного алкилирования обеспечивают получение топлива с октановым числом 95 и выше). Ранее большинства из перечисленных процессов не было в технологических схемах российских НПЗ. Во-вторых, ранее при производстве топлива практически не использовались присадки, а если и использовались, то негативный побочный эффект от их применения перечеркивал выгоду. Сейчас же некоторые эксплуатационные характеристики топлива невозможно достичь только за счет применения технологических процессов/методов производства на НПЗ. Так, для производства того же дизельного топлива на НПЗ используются депрессорно-диспергирующие, цетаноповышающие, противоизносносные и антистатические присадки. При производстве бензина в случае необходимости применяют антиокислительные и октаноповышающие присадки.

Читайте также:  когда якубович пришел на поле чудес

Отдельно стоит остановиться на присадках, ведь они также претерпели существенные изменения. Расскажем сначала об эволюции присадки для повышения октанового числа. В прошлом одной из популярных октаноповышающих присадок являлся тетраэтилсвинец. Состав, разработанный в США в 20-е годы прошлого века, был столь же эффективен, сколь и ядовит. Применение этилированного бензина, «улучшенного» с помощью тетраэтилсвинца, приводило к выбросам огромных объемов вредных соединений и накоплению свинца в организме, а люди, работавшие на производствах, массово гибли от отравления. Тем не менее тетраэтилсвинец продержался в массовом производстве бензина до 70-х годов, а полностью запрещен в большинстве стран мира был и вовсе к началу 21 века. Россия ввела запрет на этилированное топливо в конце 2002 года – на тот момент его оборот уже был невелик. Соответственно, все современные бензины, производящиеся в России, являются неэтилированными, а повышение октанового числа достигается другими, более безопасными методами.

bp 357

Как правило, так называемого «октанофонда» большинства НПЗ сейчас вполне достаточно, чтобы производить товарный бензин без использования каких-либо «сторонних» октаноповышающих компонентов. Дополнительным высокооктановым компонентом, который сейчас повсеместно используется при производстве бензина, является метил-трет-бутиловый эфир (МТБЭ) с октановым числом 115 (МТБЭ является малоопасным веществом). Он применяется, как правило, для выпуска бензина с октановым числом 100 и выше.

Одним из последних требований автопроизводителей стало требование к уровню отложений на важных деталях двигателя (форсунки инжекторов, впускные клапаны). Ведь общеизвестно, что отложения образуются от сгорания любого топлива – это неизбежный процесс. Основное влияние на уровень и скорость образования отложений оказывает именно компонентный состав топлива: чем больше в нем непредельных и ароматических углеводородов, тем быстрее происходит процесс смоло- и нагарообразования на деталях двигателя. Достичь требуемого автопроизводителями уровня отложений невозможно только за счет совершенствования технологий производства на НПЗ. Поэтому улучшение данного эксплуатационного показателя стало возможным только за счет разработки многофункциональных моющих присадок. Поэтому здесь на сцену выходит отдельный класс компонентов топлива: моющие присадки.

Как работают моющие присадки?

Казалось бы, какие еще моющие присадки нужны машине? Что они должны отмывать? Ответ на этот вопрос мы дали чуть выше: топливо по своей природе при сгорании неизбежно образует отложения на деталях двигателя. А это со временем, несомненно, отражается на его нормальной работе. И зависимость здесь простая: чем больше пробег, тем больше отложений.

Косвенным признаком наличия существенного объема отложений на впускных клапанах, форсунках, камерах сгорания может являться увеличение расхода топлива и нехарактерная работа двигателя, вплоть до выхода из строя его важнейших деталей. Здесь продукты сгорания могут превращаться в твердые смолистые отложения, которые снижают поперечное сечение трубопроводов и каналов, нарушая нормальное движение воздушно-топливной смеси. Даже попав в цилиндры, топливо не всегда сгорает без остатка. Те же самые смолистые вещества оседают на впускных клапанах в виде твердых отложений, которые в просторечии называются нагаром. Со временем эти отложения нарушают форму камеры сгорания и правильность посадки клапанов, изменяя их пропускную способность. Как следствие, развиваются завихрения воздушно-топливной смеси, причем на автомобилях с непосредственным впрыском возникают проблемы с самим ее формированием.

Последствия загрязнения отражаются на эксплуатационных характеристиках: двигатель запускается с трудом, работает неустойчиво на холостых оборотах, часто перегревается и потребляет слишком много топлива, активно загрязняя окружающую среду. Снижаются четкость реакций на нажатие педали газа, динамика и эластичность. Деградация перечисленных параметров развивается постепенно, поэтому автовладелец ее практически не замечает и долгое время сохраняет уверенность в исправности своего автомобили. В зону особого риска попадают современные турбодизельные двигатели, которые отличаются особо сложной конструкцией системы впрыска топлива и демонстрируют повышенную чувствительность к загрязнениям. Некачественное дизтопливо вызывает появление характерного нагара на распылителях и иглах форсунок, что приводит к нарушению корректности их работы. Затрудняется холодный пуск, падает мощность и растет расход топлива. Ключевую важность все это приобретает для владельцев техники коммерческого назначения, поскольку при больших пробегах даже незначительное увеличение потребления топлива оборачивается серьезными финансовыми потерями. К тому же отложения сокращают интервалы между ремонтами двигателя и оказывают самое непосредственное влияние на срок его службы.

bp 332

Можно ли избавиться от смолистых отложений в камере сгорания, на клапанах, форсунках и других деталях силового агрегата? Разумеется, да. Наилучшие результаты в теории обещает полная переборка двигателя, однако это процедура долгая, дорогая и не всегда целесообразная с экономической точки зрения. Специальные препараты, которые предполагается периодически заливать в топливный бак, бывают как недостаточно эффективными, так и излишне агрессивными в плане химического воздействия на элементы топливной системы. Мировая практика показывает, что есть более действенный и, самое главное, более комфортный для автовладельцев способ поддержания двигателя в чистоте.

Речь идет о комплексных моющих присадках, вводимых в состав моторного топлива. Такие присадки, помимо собственно моющего агента, включают в себя ингибиторы коррозии, деэмульгаторы, растворители и несущую жидкость на минеральной, полусинтетической или синтетической основе. Ингибитор обеспечивает надежную защиту от коррозии, покрывая бак и систему питания защитной пленкой. Деэмульгатор борется с таким побочным эффектом действия моющего агента, как образование топливо-водяной эмульсии. Растворитель повышает текучесть топлива, что принципиально важно при низких температурах, а жидкость-носитель способствует стеканию остатков нагара с клапанов, уменьшая вероятность их «залипания». В бензиновых пакетах может присутствовать также модификатор трения. То есть, «фирменное» топливо на крупных АЗС– это не просто переплата за бренд.

Например, розничная сеть bp еще в 2018 году вывела на наш рынок топливо с технологией ACTIVE, которой отведено гораздо больше задач, чем обычно. Она не только удаляет существующие отложения, но и предотвращает формирование новых. Ну а чистота топливной системы обеспечивает следующие логичные преимущества: восстановление мощности мотора, продление его ресурса и экономию топлива благодаря корректной работе топливной аппаратуры. Причем очистка происходит не только за счет обычного растворения отложений: в bp заявляют о технологии активных молекул, которые, во-первых, связываются с частицами отложений и тем самым разрушают слой, унося грязь в камеру сгорания, а во-вторых, прикрепляются к чистым металлическим поверхностям и защищают их от образования налета. При этом защитный слой, по словам инженеров bp, эффективно образуется уже с первой заправки. Таким образом, регулярное применение современного топлива BP Ultimate с технологией ACTIVE обеспечивает не только корректную и эффективную работу любых двигателей, от старых до самых современных, но и продлевает их срок службы, а также помогает увеличить пробег на одном баке за счет восстановления рабочих характеристик топливной системы. Топливный портфель bp включает в себя не только бензины с технологией ACTIVE, но и дизельное топливо, которое в полной мере выполняет те же функции по очистке и защите мотора и топливной системы. А учитывая стоимость ремонта дизельной топливной аппаратуры, для многих владельцев таких машин топливо с технологией ACTIVE в долгосрочной перспективе может дать даже большую выгоду, чем для тех, кто ездит на бензине.

bp 510

Ну а в заключение можно, наконец, дать ответ на вопрос, которым мы задались в самом начале. Действительно ли современные моторы с наддувом и непосредственным впрыском требуют особого топлива? Однозначно да. В вопросе выбора топлива для своего автомобиля всегда необходимо строго следовать рекомендациям автопроизводителей. Если автопроизводитель рекомендует к заправке топливо с ОЧ не ниже 95 и содержащее моющую присадку, то только таким топливом и следует заправляться. Но в чем качественное топливо всегда оказывается впереди, так это в обеспечении чистоты и продлении ресурса мотора и топливной системы, а вместе с этим и снижении расхода, и увеличении пробега на одной заправке. Поэтому такое топливо, так BP Ultimate с технологией ACTIVE, будет актуальным для любых моторов в любом возрасте

Источник

Оцените статью
Мой дом
Adblock
detector